-
A wide-band, polarization-insensitive and wide-angle metamaterial absorber is presented, which is based on resistance films. A unit cell of the absorber consists of a hexagonal resistance film, a substrate and a metal backboard. Simulated reflectances and absorbances indicate that this absorber has a wide-band strong absorption for the incedent wave from 7.0 GHz to 27.5 GHz, indicating that electrocircuit resonances are more suited to realize a wide-band strong absorption than electromagnetic resonances. Simulated absorbances under different polarization angles and different incident angles show that this absorber is polarization-insensitive and angle-wide. Simulated influence of substrate and resistance film on the absorbance of the absorber indicates that there exist optimal values for the capacitance between the resistance film and the metal backboard and for the resistance of the resistance film, where electrocircuit resonances are strongest and the absorption band is widest.
-
Keywords:
- resistance film /
- electrocircuit resonance /
- wide-band /
- metamaterial absorber
[1] Caloz C, Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach (New Jersey: John Wiley Sons, Inc.) pp2,3
[2] Smith D R,Pendry J B 2006 J. Opt. Soc. Am. B 23 391
[3] [4] Chen X D, Grzegorczyk T M, Wu B I, Pacheco J J, Kong J A 2004 Phys. Rev. E 70 016608
[5] [6] Shelby R A, Smith D R, Schultz S 2001 Science 292 77
[7] [8] Smith D R, Schurig D, Rosenbluth M, Schultz S, Ramakrishna S A, Pendry J B 2003 Appl. Phys. Lett. 82 1506
[9] [10] [11] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[12] [13] Govyadinov A A, Podolskiy V A, Noginov A 2007 Appl. Phys. Lett. 91 191103
[14] [15] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
[16] [17] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181
[18] [19] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104
[20] [21] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103
[22] [23] Avitzour Y, Urzhumov Y A, Shvets G 2009 Phys. Rev. B 79 045131
[24] [25] Gu C, Qu S B, Pei Z B, Zhou H, Xu Z, Bai P, Peng W D, Lin B Q 2010 Chin. Phys. Lett. 27 117802
[26] [27] Li Y X, Xie Y S, Zhang H W, Liu Y L, Wen Q Y, Ling W W 2009 J. Phys. D 42 095408
-
[1] Caloz C, Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach (New Jersey: John Wiley Sons, Inc.) pp2,3
[2] Smith D R,Pendry J B 2006 J. Opt. Soc. Am. B 23 391
[3] [4] Chen X D, Grzegorczyk T M, Wu B I, Pacheco J J, Kong J A 2004 Phys. Rev. E 70 016608
[5] [6] Shelby R A, Smith D R, Schultz S 2001 Science 292 77
[7] [8] Smith D R, Schurig D, Rosenbluth M, Schultz S, Ramakrishna S A, Pendry J B 2003 Appl. Phys. Lett. 82 1506
[9] [10] [11] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[12] [13] Govyadinov A A, Podolskiy V A, Noginov A 2007 Appl. Phys. Lett. 91 191103
[14] [15] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
[16] [17] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181
[18] [19] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104
[20] [21] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103
[22] [23] Avitzour Y, Urzhumov Y A, Shvets G 2009 Phys. Rev. B 79 045131
[24] [25] Gu C, Qu S B, Pei Z B, Zhou H, Xu Z, Bai P, Peng W D, Lin B Q 2010 Chin. Phys. Lett. 27 117802
[26] [27] Li Y X, Xie Y S, Zhang H W, Liu Y L, Wen Q Y, Ling W W 2009 J. Phys. D 42 095408
Catalog
Metrics
- Abstract views: 10556
- PDF Downloads: 2054
- Cited By: 0