-
电磁吸波技术在军用和民用领域得到了广泛应用, 但传统吸波技术不能满足现代吸波材料新的需求, 基于超材料的吸波体具有结构简单、轻薄、吸收率高等优点, 并可以实现对电磁波的灵活调控, 使得电磁吸波领域获得了飞速发展. 本文针对电磁超材料吸波研究进行了综述, 首先介绍了电磁超材料吸波方法与机理, 指出了研究中遇到的瓶颈问题. 其次针对吸波关键技术难题分别从多频及宽频带吸波、极化和角度不敏感吸波、动态可调吸波三个方面介绍了目前电磁超材料吸波体的研究进展. 尽管研究学者们在超材料吸波方向已做了很多工作, 仍面临着诸多问题和挑战. 为了更好地预示未来研究, 本文从高性能、多功能、新三维结构三个角度对超材料吸波体的研究方向进行了展望, 包括突破波长限制的低频超薄宽带超材料吸波体、能应对复杂环境的多功能集成超材料吸波体以及随3D打印技术而兴起的新型三维结构超材料吸波体. 最后结合超材料在隐身领域的应用进一步总结了超材料吸波应用研究的发展趋势.Electromagnetic absorbing technology can effectively suppress the radiation of electromagnetic waves, and has been widely used in military and civilian fields. However, traditional absorbing technology cannot meet the new requirements for modern absorbing materials. The advent of metamaterials provides a solution for this problem Metamaterial absorber has the advantages of simple structure, light weight, high absorption rate, and can realize the flexible control of electromagnetic waves, which has led the electromagnetic absorption research to rapidly develop. In this paper, the research and development of using metamaterials to absorb electromagnetic wave is reviewed. Firstly, the principle, implementation, and presently existing bottlenecks of electromagnetic wave absorption in using metamaterials are outlined. Secondly, recent progress of the aforementioned key issues in three aspects is introduced, including multi-band and broadband, polarization and angle independence, and dynamic tunability. Several typical methods of making metamaterial absorbers are illustrated here. Generally speaking, the prerequisite of broadband metamaterial absorbers is to provide multiple resonances that are close enough to each other. The structure with multiple rotationally symmetric geometry is helpful in achieving polarization- and angle-insensitive properties. The flexible control of absorption performance can be realized by introducing lumped elements such as resistances, capacitances, and diodes. In addition, by means of composite traditional materials or new materials and other methods the dynamic adjustment of the absorption performance can be achieved. Although researchers have done a lot of work on the metamaterial absorbers, there remain many problems and challenges. For the future design, several promising directions are suggested from three perspectives: high performance, multifunctionality, and new structures. In terms of high performance, it is still a challenge to achieve ultra-thin broadband metamaterial absorber for low-frequency which can break through the limitation of wavelength. Integrated multifunctional metamaterials can adapt to the increasingly complex application scenarios and should gradually become the focus of attention. Since three-dimensional (3D) printing technology has proved to be applicable to the preparation of complex metamaterial structures, the new 3D metamerial absorbers will bring more vitality to the development of metamaterials. Finally, as regards the application of metamaterials in stealth, the future development of metamaterial absorbers is further summarized.
-
Keywords:
- metamaterial absorber /
- broadband /
- angle-independence
[1] Duan X, Chen X, Zhou Y, Zhou L, Hao S 2018 IEEE Antennas Wirel. Propag. Lett. 17 1617
Google Scholar
[2] Li W, Valentine J 2014 Nano Lett. 14 3510
Google Scholar
[3] Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP98
[4] Choi I, Lee D 2015 Compos. Struct. 119 218
Google Scholar
[5] 刘顺华, 刘军民, 董星龙 2014 电磁波屏蔽及吸波材料(北京: 化学工业出版社) 第270页
Liu S H, Liu J M, Dong X L 2014 Electromagnetic Shielding and Absorb-ing Materials (Vol. 2) (Beijing: Chemical Industry Press) p270 (in Chinese)
[6] Fante R L, McCormack M T 1988 IEEE Trans. Antennas Propag. 36 1443
Google Scholar
[7] Toit D, J L 1994 IEEE Antennas and Propag. Mag. 36 17
Google Scholar
[8] Jaggard D, Engheta N, Liu J 1990 Electron. Lett. 26 1332
Google Scholar
[9] 王光明, 许河秀, 梁建刚, 蔡通 2015 紧凑型异向介质: 机理、设计与应用(北京: 国防工业出版社)
Wang G M, Xu H X, Liang J G, Cai T 2015 Compact Metamaterials Mechanism, Design and Application (Beijing: National Defense Industry Press) (in Chinese)
[10] Veselago V G 1968 Sov. Phys. Usp. 10 509
Google Scholar
[11] Pendry J B, Holden A, Stewart W, Youngs I 1996 Phys. Rev. Lett. 76 4773
Google Scholar
[12] Pendry J B, Holden A J, Robbins D J, Stewart W 1999 IEEE Trans. Microw. Theory Tech. 47 2075
Google Scholar
[13] Shelby R A, Smith D R, Schultz S 2001 Science 292 77
Google Scholar
[14] Seddon N, Bearpark T 2003 Science 302 1537
Google Scholar
[15] Lu J, Grzegorczyk T M, Zhang Y, Pacheco Jr J, Wu B I, Kong J A, Chen M 2003 Opt. Express 11 723
Google Scholar
[16] Koschny T, Zhang L, Soukoulis C M 2005 Phys. Rev. B 71 121103
Google Scholar
[17] Pendry J B 2000 Phys. Rev. Lett. 85 3966
Google Scholar
[18] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780
Google Scholar
[19] Leonhardt U 2006 Science 312 1777
Google Scholar
[20] Schurig D, Mock J J, Justice B, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
Google Scholar
[21] 丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波 2018 67 198101
Google Scholar
Feng M C, Li Y F, Zhang J Q, Wang J F, Wang C, Ma H, Qu S B 2018 Acta Phys. Sin. 67 198101
Google Scholar
[22] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
Google Scholar
[23] 庄亚强, 王光明, 张晨新, 张小宽, 宗彬锋, 马卫东, 王亚伟 2016 65 154101
Google Scholar
Zhuang Y Q, Wang G M, Zhang C X, Zhang X K, Zong B F, Ma W D, Wang Y W 2016 Acta Phys. Sin. 65 154101
Google Scholar
[24] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light: Sci. Appl. 3 e218
Google Scholar
[25] Tran M C, Pham V H, Ho T H, Nguyen T T, Do H T, Bui X K, Bui S T, Le D T, Pham T L, Vu D L 2020 Sci. Rep. 10 1
Google Scholar
[26] Wu H, Liu S, Wan X, Zhang L, Wang D, Li L, Cui T J 2017 Adv. Sci. 4 1700098
Google Scholar
[27] Hum S V, Perruisseau-Carrier J 2013 IEEE Trans. Antennas Propag. 62 183
Google Scholar
[28] Cai T, Tang S, Wang G, Xu H, Sun S, He Q, Zhou L 2017 Adv. Opt. Mater. 5 1600506
Google Scholar
[29] Xu H X, Zhang L, Kim Y, Wang G M, Zhang X K, Sun Y, Ling X, Liu H, Chen Z, Qiu C W 2018 Adv. Opt. Mater. 6 1800010
Google Scholar
[30] Yuan F, Xu H X, Jia X Q, Wang G M, Fu Y Q 2020 IEEE Trans. Antennas Propag.68 2463
Google Scholar
[31] Sun S, He Q, Hao J, Xiao S, Zhou L 2019 Adv. Opt. Photonics 11 380
Google Scholar
[32] Zhang L, Wan X, Liu S, Yin J Y, Zhang Q, Wu H T, Cui T J 2017 IEEE Trans. Antennas Propag. 65 3374
Google Scholar
[33] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
Google Scholar
[34] Marin P, Cortina D, Hernando A 2008 IEEE Trans. Magn. 44 3934
Google Scholar
[35] 刘祥萱, 陈鑫, 王煊军, 刘渊 2013 表面技术 42 104
Google Scholar
Liu X X, Chen X, Wang X J, Liu Y 2013 Surf. Technol. 42 104
Google Scholar
[36] 周万城, 王婕, 罗发, 朱冬梅, 黄智斌, 卿玉长 2013 中国材料进展 000 463
Google Scholar
Zhou W C, Wang J, Luo F, Zhu D M, Huang Z B, Qing Y C 2013 Mater. China 000 463
Google Scholar
[37] Costa F, Monorchio A, Manara G 2010 IEEE Trans. Antennas Propag. 58 1551
Google Scholar
[38] Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111
Google Scholar
[39] Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104
Google Scholar
[40] Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403
Google Scholar
[41] Aydin K, Ferry V E, Briggs R M, Atwater H A 2011 Nat. Commun. 2 1
Google Scholar
[42] Simovski C 2009 Opt. Spectrosc. 107 726
Google Scholar
[43] Smith D R, Schultz S, Markoš P, Soukoulis C M 2002 Phys. Rev. B 65 195104
Google Scholar
[44] Chen X, Grzegorczyk T M, Wu B I, Pacheco J J, Kong J A 2004 Phys. Rev. E 70 016608
Google Scholar
[45] Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617
Google Scholar
[46] Arslanagić S, Hansen T V, Mortensen N A, Gregersen A H, Sigmund O, Ziolkowski R W, Breinbjerg O 2013 IEEE Antennas and Propag. Mag. 55 91
Google Scholar
[47] Costa F, Monorchio A, Manara G 2012 IEEE Antennas and Propag. Mag. 54 35
Google Scholar
[48] Chen H T 2012 Opt. Express 20 7165
Google Scholar
[49] Peng X Y, Wang B, Lai S, Zhang D H, Teng J H 2012 Opt. Express 20 27756
Google Scholar
[50] Liu X, Zhao Q, Lan C, Zhou J 2013 Appl. Phys. Lett. 103 031910
Google Scholar
[51] Zheng H, Jin X, Park J, Lu Y, Rhee J Y, Jang W, Cheong H, Lee Y 2012 Opt. Express 20 24002
Google Scholar
[52] Im K, Kang J H, Park Q H 2018 Nat. Photonics 12 143
Google Scholar
[53] Tao H, Bingham C, Pilon D, Fan K, Strikwerda A, Shrekenhamer D, Padilla W, Zhang X, Averitt R 2010 J. Phys. D: Appl. Phys. 43 225102
Google Scholar
[54] Chen K, Adato R, Altug H 2012 ACS Nano 6 7998
Google Scholar
[55] Xu H X, Wang G M, Qi M Q, Liang J G, Gong J Q, Xu Z M 2012 Phys. Rev. B 86 205104
Google Scholar
[56] Shen X, Cui T J, Zhao J, Ma H F, Jiang W X, Li H 2011 Opt. Express 19 9401
Google Scholar
[57] Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R 2011 Opt. Lett. 36 945
Google Scholar
[58] Jia D, Xu J, Yu X 2018 Opt. Express 26 26227
Google Scholar
[59] Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154
Google Scholar
[60] Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511
Google Scholar
[61] Zhang Y, Li Y, Cao Y, Liu Y, Zhang H 2017 Opt. Commun. 382 281
Google Scholar
[62] Su Z, Yin J, Zhao X 2015 Opt. Express 23 1679
Google Scholar
[63] Ding F, Cui Y, Ge X, Jin Y, He S 2012 Appl. Phys. Lett. 100 103506
Google Scholar
[64] Nguyen T Q H, Phan H L, Phan D T 2017 Microw. Opt. Techn. Lett. 59 1157
Google Scholar
[65] Cheng Y Z, Wang Y, Nie Y, Gong R Z, Xiong X, Wang X 2012 J. Appl. Phys. 111 044902
Google Scholar
[66] Yuan W, Cheng Y 2014 Appl. Phys. A 117 1915
Google Scholar
[67] Kim Y J, Hwang J S, Yoo Y J, Khuyen B X, Rhee J Y, Chen X, Lee Y 2017 J. Phys. D: Appl. Phys. 50 405110
Google Scholar
[68] Kundu D, Mohan A, Chakrabarty A 2016 IEEE Antennas Wirel. Propag. Lett. 15 1589
Google Scholar
[69] 顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华 2011 60 087802
Google Scholar
Gu C, Qu S B, Pei Z B, Xu Z, Lin B Q, Zhou H, Bai P, Gu W, Peng W D, Ma H 2011 Acta Phys. Sin. 60 087802
Google Scholar
[70] Sun L, Cheng H, Zhou Y, Wang J 2012 Opt. Express 20 4675
Google Scholar
[71] 莫漫漫, 马武伟, 庞永强, 陈润华, 张笑梅, 柳兆堂, 李想, 郭万涛 2018 67 217801
Google Scholar
Mo M M, Ma W W, Pang Y Q, Chen R H, Zhang X M, Liu Z T, Li X, Guo W T 2018 Acta Phys. Sin. 67 217801
Google Scholar
[72] Tayde Y, Saikia M, Srivastava K V, Ramakrishna S A 2018 IEEE Antennas Wirel. Propag. Lett. 17 2489
Google Scholar
[73] Ji T, Wang Y, Cui Y, Lin Y, Hao Y, Li D 2017 Mater. Today Energy 5 181
Google Scholar
[74] Pang Y, Wang J, Ma H, Feng M, Li Y, Xu Z, Xia S, Qu S 2016 Sci. Rep. 6 29429
Google Scholar
[75] Fan Y, Wang J, Li Y, Pang Y, Zheng L, Xiang J, Zhang J, Qu S 2018 J. Phys. D: Appl. Phys. 51 215001
Google Scholar
[76] Li S J, Wu P X, Xu H X, Zhou Y L, Cao X Y, Han J F, Zhang C, Yang H H, Zhang Z 2018 Nanoscale Res. Lett. 13 386
Google Scholar
[77] Pitchappa P, Ho C P, Kropelnicki P, Singh N, Kwong D L, Lee C 2014 J. Appl. Phys. 115 193109
Google Scholar
[78] Gu S, Su B, Zhao X 2013 J. Appl. Phys. 114 163702
Google Scholar
[79] Yu P, Besteiro L V, Huang Y, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O, Wang Z 2019 Adv. Opt. Mater. 7 1800995
Google Scholar
[80] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104
Google Scholar
[81] Zhu B, Wang Z B, Yu Z Z, Zhang Q, Zhao J M, Feng Y J, Jiang T 2009 Chin. Phys. Lett. 26 114102
Google Scholar
[82] Li L, Yang Y, Liang C 2011 J. Appl. Phys. 110 063702
Google Scholar
[83] Gu C, Qu S B, Pei Z B, Xu Z 2011 Chin. Phys. B 20 037801
Google Scholar
[84] Chen J, Hu Z, Wang S, Huang X, Liu M 2016 Eur. Phys. J. B 89 14
Google Scholar
[85] Zhu B, Wang Z, Huang C, Feng Y, Zhao J, Jiang T 2010 Prog. Electromagn. Res. 101 231
Google Scholar
[86] Wang J, Yang R, Tian J, Chen X, Zhang W 2018 IEEE Antennas Wirel. Propag. Lett. 17 1242
Google Scholar
[87] Xu Y Q, Zhou P H, Zhang H B, Chen L, Deng L J 2011 J. Appl. Phys. 110 044102
Google Scholar
[88] Wang B, Koschny T, Soukoulis C M 2009 Phys. Rev. B 80 033108
Google Scholar
[89] Munk B A, Munk P, Pryor J 2007 IEEE Trans. Antennas Propag. 55 186
Google Scholar
[90] Bhattacharyya S, Srivastava K V 2014 J. Appl. Phys. 115 064508
Google Scholar
[91] Ghosh S, Nguyen T T, Lim S 2019 EPJ Appl. Metamater. 6 12 064508
[92] Shen Y, Pang Y, Wang J, Ma H, Pei Z, Qu S 2015 J. Phys. D: Appl. Phys. 48 445008
Google Scholar
[93] Chen T, Li S J, Cao X Y, Gao J, Guo Z X 2019 Appl. Phys. A 125 232
Google Scholar
[94] Chang T, Langley R J, Parker E 1993 IEEE Microwave Guided Wave Lett. 3 387
Google Scholar
[95] Shadrivov I V, Morrison S K, Kivshar Y S 2006 Opt. Express 14 9344
Google Scholar
[96] Zhu H, Liu X, Cheung S, Yuk T 2013 IEEE Trans. Antennas Propag. 62 80
Google Scholar
[97] 李宇涵, 邓联文, 罗衡, 贺龙辉, 贺君, 徐运超, 黄生祥 2019 68 095201
Google Scholar
Li Y H, Deng L W, Luo H, He L H, He J, Xu Y C, Huang S X 2019 Acta Phys. Sin. 68 095201
Google Scholar
[98] Zhao X, Wang Y, Schalch J, Duan G, Cremin K, Zhang J, Chen C, Averitt R D, Zhang X 2019 ACS Photonics 6 830
Google Scholar
[99] Zhai Z, Zhang L, Li X, Xiao S 2019 Opt. Commun. 431 199
Google Scholar
[100] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 68 247802
Google Scholar
Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 247802
Google Scholar
[101] Balci O, Kakenov N, Karademir E, Balci S, Cakmakyapan S, Polat E O, Caglayan H, Özbay E, Kocabas C 2018 Sci. Adv. 4 eaao1749
Google Scholar
[102] 毕科, 王旭莹, 兰楚文, 郝亚楠, 周济 2019 中国材料进展 38 1
Google Scholar
Bi K, Wang X Y, Lan C W, Hao Y N, Zhou J 2019 Mater. China 38 1
Google Scholar
[103] Zhao J, Cheng Q, Chen J, Qi M Q, Jiang W X, Cui T J 2013 New J. Phys. 15 043049
Google Scholar
[104] Li M, Yi Z, Luo Y, Muneer B, Zhu Q 2016 IEEE Trans. Antennas Propag. 64 944
Google Scholar
[105] Zhang Y, Feng Y, Zhu B, Zhao J, Jiang T 2014 Opt. Express 22 22743
Google Scholar
[106] Shrekenhamer D, Chen W C, Padilla W J 2013 Phys. Rev. Lett. 110 177403
Google Scholar
[107] Zhang F, Feng S, Qiu K, Liu Z, Fan Y, Zhang W, Zhao Q, Zhou J 2015 Appl. Phys. Lett. 106 091907
Google Scholar
[108] Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230
Google Scholar
[109] Acher O, Dubourg S 2008 Phys. Rev. B 77 104440
Google Scholar
[110] 院伟, 杨进, 王一龙, 李维, 官建国 2016 材料导报 30 104
Google Scholar
Yuan W, Yang J, Wang Y L, Li W, Guan J G 2016 Mater. Rev. 30 104
Google Scholar
[111] Mou J, Shen Z 2017 Sci. Rep. 7 1
Google Scholar
[112] Mou J, Shen Z 2016 IEEE Trans. Antennas Propag. 65 696
Google Scholar
[113] Banadaki M D, Heidari A A, Nakhkash M 2017 IEEE Antennas Wirel. Propag. Lett. 17 205
Google Scholar
[114] Li W, Wei J, Wang W, Hu D, Li Y, Guan J 2016 Mater. Des. 110 27
Google Scholar
[115] 程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2012 61 134102
Google Scholar
Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102
Google Scholar
[116] Li W, Liu Q, Wang L, Zhou Z, Zheng J, Ying Y, Qiao L, Yu J, Qiao X, Che S 2018 AIP Adv. 8 015318
Google Scholar
[117] 许河秀 2019 超表面电磁调控机理与功能器件应用研究 (北京: 科学出版社)
Xu H X 2019 Investigations on Electromagnetic Wave Manipulations and Functional Device Applications Using Metasurfaces (Beijing: Science Press) (in Chinese)
[118] Sun J, Chen K, Ding G, Guo W, Zhao J, Feng Y, Jiang T 2019 IEEE Access 7 93919
Google Scholar
[119] Peng L, Li X F, Gao X, Jiang X, Li S M 2019 Opt. Mater. Express 9 687
Google Scholar
[120] Chen W, Chen R, Zhou Y, Ma Y 2019 IEEE Photonics Technol. Lett. 31 1187
Google Scholar
[121] 沈杨, 王甲富, 张介秋, 李勇峰, 郑麟, 庞永强, 屈绍波 2018 空军工程大学学报 (自然科学版) 19 39
Google Scholar
Shen Y, Wang J F, Zhang J Q, Li Y F, Zheng L, Pang Y Q, Qu S B 2018 J. Air Force Engineering Univ. (Nat. Sci. Ed.) 19 39
Google Scholar
[122] Wang J F, Qu S B, Xu Z, Fu Z T, Ma H, Yang Y M 2009 J. Phys. D: Appl. Phys. 42 155413
Google Scholar
[123] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华 2013 62 158102
Google Scholar
Lu Lei, Qu S B, Shi H Y, Zhang A X, Zhang J Q, Ma H 2013 Acta Phys. Sin. 62 158102
Google Scholar
[124] Xu H X, Wang G M, Tao Z, Cui T J 2014 Sci. Rep. 4 5744
[125] Xu H X, Wang G M, Ma K, Cui T J 2014 Adv. Opt. Mater. 2 572
Google Scholar
[126] 熊益军, 王岩, 王强, 王春齐, 黄小忠, 张芬, 周丁 2018 67 084202
Google Scholar
Xiong Y J, Wang Y, Wang Q, Wang C Q, Huang X Z, Zhang F, Zhou D 2018 Acta Phys. Sin. 67 084202
Google Scholar
[127] Lim D, Yu S, Lim S 2018 IEEE Access 6 43654
Google Scholar
[128] Jiang W, Yan L, Ma H, Fan Y, Wang J, Feng M, Qu S 2018 Sci. Rep. 8 4817
Google Scholar
[129] Xie J, Quader S, Xiao F, He C, Liang X, Geng J, Jin R, Zhu W, Rukhlenko I D 2019 IEEE Antennas Wirel. Propag. Lett. 18 536
Google Scholar
[130] 田小永, 尚振涛, 尹丽仙, 李涤尘 2019 航空制造技术 62 14
Google Scholar
Tian X Y, Shang Z T, Yin L X, Li D C 2019 Aeronaut. Manuf. Technol. 62 14
Google Scholar
[131] Rashid A K, Li B, Shen Z 2014 IEEE Antennas and Propag. Mag. 56 43
Google Scholar
[132] Yu Y, Shen Z, Deng T, Luo G 2017 IEEE Trans. Antennas Propag. 65 4363
Google Scholar
[133] Li W, Wu T, Wang W, Guan J, Zhai P 2014 Appl. Phys. Lett. 104 022903
Google Scholar
[134] Li M, Shen L, Jing L, Xu S, Zheng B, Lin X, Yang Y, Wang Z, Chen H 2019 Adv. Sci. 6 1901434
Google Scholar
[135] 梁彩云, 王志江 2018 航空材料学报 38 5
Google Scholar
Liang C Y, Wang Z J 2018 J. Aeronaut. Mater. 38 5
Google Scholar
-
图 2 三频带超材料吸波体 (a) 单元拓扑结构; (b) 等效电路模型; (c) 横电波(transverse electric, TE)模式下在不同入射角下测得的吸收率与频率的关系; (d) 横磁波(transverse magnetic, TM)模式下在不同入射角下测得的吸收率与频率的关系[55]
Fig. 2. Triple-band metamaterial absorber: (a) Topology structure of the element; (b) equivalent circuit models; (c) measured absorption as a function of frequency for TE mode radiation at different angles of incidence; (d) measured absorption as a function of frequency for TM mode radiation at different angles of incidence[55].
图 4 超宽带完美超材料吸波体单元原理图 (a) 单元三维示意图; (b) 带有开口谐振环II的底层结构; (c) 带有开口谐振环I的第三层结构; (d) 加载集总电阻的第二层结构[76]
Fig. 4. Schematic geometry of unit cell for the ultra-broadband perfect metamaterial absorber: (a) the 3 D schematic of a unit cell; (b) the bottom layer with the split ring resonator-II; (c) the third layer with the split ring resonator-I; (d) the third layer with lumped resistances[76].
图 5 极化和角度不敏感超材料吸波体单元结构示意图 (a) 正交排布的极化不敏感单元[81]; (b) 单频带单元[84]; (c) 四个扇形为基础的角度不敏感单元; (d) 八个扇形为基础的角度不敏感单元[91]
Fig. 5. Schematic diagram of polarization and angle-independent metamaterial absorber unit cell: (a) Orthogonal polarization insensitive unit cell[81]; (b) single-band metamaterial absorber unit cell[84]; (c) four circular sector-based unit cell; (d) eight circular sector-based unit cell[91].
图 6 动态可调超材料吸波体 (a) 加载变容二极管的超材料吸波体[103]; (b) 加载石墨烯的超材料吸波体单元结构[105]; (c) 液晶可调超材料完美吸波体[106]; (d) 基于机械可调谐的吸波体[107]
Fig. 6. Dynamically tunable metamaterial absorber: (a) Tunable metamaterial absorber using varactor diodes[103]; (b) schematic of the unit cell of the graphene based tunable metamaterial absorber[105]; (c) liquid crystal tunable metamaterial perfect absorber[106]; (d) mechanically stretchable and tunable metamaterial absorber[107].
表 1 用于实现多频/宽频吸波体的不同方法总结
Table 1. A summary of methods used to create multiple/broadband absorbers.
方法 工作频率 相对带宽 吸收率 厚度 周期 结构 文献 平面排布 30.6—37.5 THz 20.26% ≥ 80% 0.041 λL 10.8 µm “三明治” [61] 多层堆叠 24.8/25.5 THz N ≥ 90% 0.062 λL 500 nm 多层结构 [62] 多层堆叠 7.8—14.7 GHz 61.33% ≥ 90% 0.130 λL 11 mm 金字塔结构 [63] 集总元件 5.3—11.2 GHz 70.7% ≥ 90% 0.077 λL 13.6 mm 单层结构 [68] 用电阻膜 7.0—27.5 GHz 118.8% ≥ 90% 0.093 λL 5.5 mm “三明治” [69] 用电阻膜 2.0—18.5 GHz 160.97% N 0.082 λL 11 mm 多层结构 [72] 基于SSPP 7.6—14.7 GHz 63.7% ≥ 90% 0.177 λL 14 mm 非平面结构 [74] 混合方法 4.5—25.4 GHz 139.6% ≥ 80% 0.075 λL 8.4 mm 多层结构 [76] 新型结构 9.05—11.4 GHz 23.0% ≥ 80% 0.060 λL 5 mm 分形结构 [78] 注: 相对带宽指10 dB吸收带宽, λL为最低工作频率所对应的工作波长, N代表没有提及. -
[1] Duan X, Chen X, Zhou Y, Zhou L, Hao S 2018 IEEE Antennas Wirel. Propag. Lett. 17 1617
Google Scholar
[2] Li W, Valentine J 2014 Nano Lett. 14 3510
Google Scholar
[3] Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP98
[4] Choi I, Lee D 2015 Compos. Struct. 119 218
Google Scholar
[5] 刘顺华, 刘军民, 董星龙 2014 电磁波屏蔽及吸波材料(北京: 化学工业出版社) 第270页
Liu S H, Liu J M, Dong X L 2014 Electromagnetic Shielding and Absorb-ing Materials (Vol. 2) (Beijing: Chemical Industry Press) p270 (in Chinese)
[6] Fante R L, McCormack M T 1988 IEEE Trans. Antennas Propag. 36 1443
Google Scholar
[7] Toit D, J L 1994 IEEE Antennas and Propag. Mag. 36 17
Google Scholar
[8] Jaggard D, Engheta N, Liu J 1990 Electron. Lett. 26 1332
Google Scholar
[9] 王光明, 许河秀, 梁建刚, 蔡通 2015 紧凑型异向介质: 机理、设计与应用(北京: 国防工业出版社)
Wang G M, Xu H X, Liang J G, Cai T 2015 Compact Metamaterials Mechanism, Design and Application (Beijing: National Defense Industry Press) (in Chinese)
[10] Veselago V G 1968 Sov. Phys. Usp. 10 509
Google Scholar
[11] Pendry J B, Holden A, Stewart W, Youngs I 1996 Phys. Rev. Lett. 76 4773
Google Scholar
[12] Pendry J B, Holden A J, Robbins D J, Stewart W 1999 IEEE Trans. Microw. Theory Tech. 47 2075
Google Scholar
[13] Shelby R A, Smith D R, Schultz S 2001 Science 292 77
Google Scholar
[14] Seddon N, Bearpark T 2003 Science 302 1537
Google Scholar
[15] Lu J, Grzegorczyk T M, Zhang Y, Pacheco Jr J, Wu B I, Kong J A, Chen M 2003 Opt. Express 11 723
Google Scholar
[16] Koschny T, Zhang L, Soukoulis C M 2005 Phys. Rev. B 71 121103
Google Scholar
[17] Pendry J B 2000 Phys. Rev. Lett. 85 3966
Google Scholar
[18] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780
Google Scholar
[19] Leonhardt U 2006 Science 312 1777
Google Scholar
[20] Schurig D, Mock J J, Justice B, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
Google Scholar
[21] 丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波 2018 67 198101
Google Scholar
Feng M C, Li Y F, Zhang J Q, Wang J F, Wang C, Ma H, Qu S B 2018 Acta Phys. Sin. 67 198101
Google Scholar
[22] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
Google Scholar
[23] 庄亚强, 王光明, 张晨新, 张小宽, 宗彬锋, 马卫东, 王亚伟 2016 65 154101
Google Scholar
Zhuang Y Q, Wang G M, Zhang C X, Zhang X K, Zong B F, Ma W D, Wang Y W 2016 Acta Phys. Sin. 65 154101
Google Scholar
[24] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light: Sci. Appl. 3 e218
Google Scholar
[25] Tran M C, Pham V H, Ho T H, Nguyen T T, Do H T, Bui X K, Bui S T, Le D T, Pham T L, Vu D L 2020 Sci. Rep. 10 1
Google Scholar
[26] Wu H, Liu S, Wan X, Zhang L, Wang D, Li L, Cui T J 2017 Adv. Sci. 4 1700098
Google Scholar
[27] Hum S V, Perruisseau-Carrier J 2013 IEEE Trans. Antennas Propag. 62 183
Google Scholar
[28] Cai T, Tang S, Wang G, Xu H, Sun S, He Q, Zhou L 2017 Adv. Opt. Mater. 5 1600506
Google Scholar
[29] Xu H X, Zhang L, Kim Y, Wang G M, Zhang X K, Sun Y, Ling X, Liu H, Chen Z, Qiu C W 2018 Adv. Opt. Mater. 6 1800010
Google Scholar
[30] Yuan F, Xu H X, Jia X Q, Wang G M, Fu Y Q 2020 IEEE Trans. Antennas Propag.68 2463
Google Scholar
[31] Sun S, He Q, Hao J, Xiao S, Zhou L 2019 Adv. Opt. Photonics 11 380
Google Scholar
[32] Zhang L, Wan X, Liu S, Yin J Y, Zhang Q, Wu H T, Cui T J 2017 IEEE Trans. Antennas Propag. 65 3374
Google Scholar
[33] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
Google Scholar
[34] Marin P, Cortina D, Hernando A 2008 IEEE Trans. Magn. 44 3934
Google Scholar
[35] 刘祥萱, 陈鑫, 王煊军, 刘渊 2013 表面技术 42 104
Google Scholar
Liu X X, Chen X, Wang X J, Liu Y 2013 Surf. Technol. 42 104
Google Scholar
[36] 周万城, 王婕, 罗发, 朱冬梅, 黄智斌, 卿玉长 2013 中国材料进展 000 463
Google Scholar
Zhou W C, Wang J, Luo F, Zhu D M, Huang Z B, Qing Y C 2013 Mater. China 000 463
Google Scholar
[37] Costa F, Monorchio A, Manara G 2010 IEEE Trans. Antennas Propag. 58 1551
Google Scholar
[38] Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111
Google Scholar
[39] Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104
Google Scholar
[40] Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403
Google Scholar
[41] Aydin K, Ferry V E, Briggs R M, Atwater H A 2011 Nat. Commun. 2 1
Google Scholar
[42] Simovski C 2009 Opt. Spectrosc. 107 726
Google Scholar
[43] Smith D R, Schultz S, Markoš P, Soukoulis C M 2002 Phys. Rev. B 65 195104
Google Scholar
[44] Chen X, Grzegorczyk T M, Wu B I, Pacheco J J, Kong J A 2004 Phys. Rev. E 70 016608
Google Scholar
[45] Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617
Google Scholar
[46] Arslanagić S, Hansen T V, Mortensen N A, Gregersen A H, Sigmund O, Ziolkowski R W, Breinbjerg O 2013 IEEE Antennas and Propag. Mag. 55 91
Google Scholar
[47] Costa F, Monorchio A, Manara G 2012 IEEE Antennas and Propag. Mag. 54 35
Google Scholar
[48] Chen H T 2012 Opt. Express 20 7165
Google Scholar
[49] Peng X Y, Wang B, Lai S, Zhang D H, Teng J H 2012 Opt. Express 20 27756
Google Scholar
[50] Liu X, Zhao Q, Lan C, Zhou J 2013 Appl. Phys. Lett. 103 031910
Google Scholar
[51] Zheng H, Jin X, Park J, Lu Y, Rhee J Y, Jang W, Cheong H, Lee Y 2012 Opt. Express 20 24002
Google Scholar
[52] Im K, Kang J H, Park Q H 2018 Nat. Photonics 12 143
Google Scholar
[53] Tao H, Bingham C, Pilon D, Fan K, Strikwerda A, Shrekenhamer D, Padilla W, Zhang X, Averitt R 2010 J. Phys. D: Appl. Phys. 43 225102
Google Scholar
[54] Chen K, Adato R, Altug H 2012 ACS Nano 6 7998
Google Scholar
[55] Xu H X, Wang G M, Qi M Q, Liang J G, Gong J Q, Xu Z M 2012 Phys. Rev. B 86 205104
Google Scholar
[56] Shen X, Cui T J, Zhao J, Ma H F, Jiang W X, Li H 2011 Opt. Express 19 9401
Google Scholar
[57] Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R 2011 Opt. Lett. 36 945
Google Scholar
[58] Jia D, Xu J, Yu X 2018 Opt. Express 26 26227
Google Scholar
[59] Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154
Google Scholar
[60] Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511
Google Scholar
[61] Zhang Y, Li Y, Cao Y, Liu Y, Zhang H 2017 Opt. Commun. 382 281
Google Scholar
[62] Su Z, Yin J, Zhao X 2015 Opt. Express 23 1679
Google Scholar
[63] Ding F, Cui Y, Ge X, Jin Y, He S 2012 Appl. Phys. Lett. 100 103506
Google Scholar
[64] Nguyen T Q H, Phan H L, Phan D T 2017 Microw. Opt. Techn. Lett. 59 1157
Google Scholar
[65] Cheng Y Z, Wang Y, Nie Y, Gong R Z, Xiong X, Wang X 2012 J. Appl. Phys. 111 044902
Google Scholar
[66] Yuan W, Cheng Y 2014 Appl. Phys. A 117 1915
Google Scholar
[67] Kim Y J, Hwang J S, Yoo Y J, Khuyen B X, Rhee J Y, Chen X, Lee Y 2017 J. Phys. D: Appl. Phys. 50 405110
Google Scholar
[68] Kundu D, Mohan A, Chakrabarty A 2016 IEEE Antennas Wirel. Propag. Lett. 15 1589
Google Scholar
[69] 顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华 2011 60 087802
Google Scholar
Gu C, Qu S B, Pei Z B, Xu Z, Lin B Q, Zhou H, Bai P, Gu W, Peng W D, Ma H 2011 Acta Phys. Sin. 60 087802
Google Scholar
[70] Sun L, Cheng H, Zhou Y, Wang J 2012 Opt. Express 20 4675
Google Scholar
[71] 莫漫漫, 马武伟, 庞永强, 陈润华, 张笑梅, 柳兆堂, 李想, 郭万涛 2018 67 217801
Google Scholar
Mo M M, Ma W W, Pang Y Q, Chen R H, Zhang X M, Liu Z T, Li X, Guo W T 2018 Acta Phys. Sin. 67 217801
Google Scholar
[72] Tayde Y, Saikia M, Srivastava K V, Ramakrishna S A 2018 IEEE Antennas Wirel. Propag. Lett. 17 2489
Google Scholar
[73] Ji T, Wang Y, Cui Y, Lin Y, Hao Y, Li D 2017 Mater. Today Energy 5 181
Google Scholar
[74] Pang Y, Wang J, Ma H, Feng M, Li Y, Xu Z, Xia S, Qu S 2016 Sci. Rep. 6 29429
Google Scholar
[75] Fan Y, Wang J, Li Y, Pang Y, Zheng L, Xiang J, Zhang J, Qu S 2018 J. Phys. D: Appl. Phys. 51 215001
Google Scholar
[76] Li S J, Wu P X, Xu H X, Zhou Y L, Cao X Y, Han J F, Zhang C, Yang H H, Zhang Z 2018 Nanoscale Res. Lett. 13 386
Google Scholar
[77] Pitchappa P, Ho C P, Kropelnicki P, Singh N, Kwong D L, Lee C 2014 J. Appl. Phys. 115 193109
Google Scholar
[78] Gu S, Su B, Zhao X 2013 J. Appl. Phys. 114 163702
Google Scholar
[79] Yu P, Besteiro L V, Huang Y, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O, Wang Z 2019 Adv. Opt. Mater. 7 1800995
Google Scholar
[80] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104
Google Scholar
[81] Zhu B, Wang Z B, Yu Z Z, Zhang Q, Zhao J M, Feng Y J, Jiang T 2009 Chin. Phys. Lett. 26 114102
Google Scholar
[82] Li L, Yang Y, Liang C 2011 J. Appl. Phys. 110 063702
Google Scholar
[83] Gu C, Qu S B, Pei Z B, Xu Z 2011 Chin. Phys. B 20 037801
Google Scholar
[84] Chen J, Hu Z, Wang S, Huang X, Liu M 2016 Eur. Phys. J. B 89 14
Google Scholar
[85] Zhu B, Wang Z, Huang C, Feng Y, Zhao J, Jiang T 2010 Prog. Electromagn. Res. 101 231
Google Scholar
[86] Wang J, Yang R, Tian J, Chen X, Zhang W 2018 IEEE Antennas Wirel. Propag. Lett. 17 1242
Google Scholar
[87] Xu Y Q, Zhou P H, Zhang H B, Chen L, Deng L J 2011 J. Appl. Phys. 110 044102
Google Scholar
[88] Wang B, Koschny T, Soukoulis C M 2009 Phys. Rev. B 80 033108
Google Scholar
[89] Munk B A, Munk P, Pryor J 2007 IEEE Trans. Antennas Propag. 55 186
Google Scholar
[90] Bhattacharyya S, Srivastava K V 2014 J. Appl. Phys. 115 064508
Google Scholar
[91] Ghosh S, Nguyen T T, Lim S 2019 EPJ Appl. Metamater. 6 12 064508
[92] Shen Y, Pang Y, Wang J, Ma H, Pei Z, Qu S 2015 J. Phys. D: Appl. Phys. 48 445008
Google Scholar
[93] Chen T, Li S J, Cao X Y, Gao J, Guo Z X 2019 Appl. Phys. A 125 232
Google Scholar
[94] Chang T, Langley R J, Parker E 1993 IEEE Microwave Guided Wave Lett. 3 387
Google Scholar
[95] Shadrivov I V, Morrison S K, Kivshar Y S 2006 Opt. Express 14 9344
Google Scholar
[96] Zhu H, Liu X, Cheung S, Yuk T 2013 IEEE Trans. Antennas Propag. 62 80
Google Scholar
[97] 李宇涵, 邓联文, 罗衡, 贺龙辉, 贺君, 徐运超, 黄生祥 2019 68 095201
Google Scholar
Li Y H, Deng L W, Luo H, He L H, He J, Xu Y C, Huang S X 2019 Acta Phys. Sin. 68 095201
Google Scholar
[98] Zhao X, Wang Y, Schalch J, Duan G, Cremin K, Zhang J, Chen C, Averitt R D, Zhang X 2019 ACS Photonics 6 830
Google Scholar
[99] Zhai Z, Zhang L, Li X, Xiao S 2019 Opt. Commun. 431 199
Google Scholar
[100] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 68 247802
Google Scholar
Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 247802
Google Scholar
[101] Balci O, Kakenov N, Karademir E, Balci S, Cakmakyapan S, Polat E O, Caglayan H, Özbay E, Kocabas C 2018 Sci. Adv. 4 eaao1749
Google Scholar
[102] 毕科, 王旭莹, 兰楚文, 郝亚楠, 周济 2019 中国材料进展 38 1
Google Scholar
Bi K, Wang X Y, Lan C W, Hao Y N, Zhou J 2019 Mater. China 38 1
Google Scholar
[103] Zhao J, Cheng Q, Chen J, Qi M Q, Jiang W X, Cui T J 2013 New J. Phys. 15 043049
Google Scholar
[104] Li M, Yi Z, Luo Y, Muneer B, Zhu Q 2016 IEEE Trans. Antennas Propag. 64 944
Google Scholar
[105] Zhang Y, Feng Y, Zhu B, Zhao J, Jiang T 2014 Opt. Express 22 22743
Google Scholar
[106] Shrekenhamer D, Chen W C, Padilla W J 2013 Phys. Rev. Lett. 110 177403
Google Scholar
[107] Zhang F, Feng S, Qiu K, Liu Z, Fan Y, Zhang W, Zhao Q, Zhou J 2015 Appl. Phys. Lett. 106 091907
Google Scholar
[108] Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230
Google Scholar
[109] Acher O, Dubourg S 2008 Phys. Rev. B 77 104440
Google Scholar
[110] 院伟, 杨进, 王一龙, 李维, 官建国 2016 材料导报 30 104
Google Scholar
Yuan W, Yang J, Wang Y L, Li W, Guan J G 2016 Mater. Rev. 30 104
Google Scholar
[111] Mou J, Shen Z 2017 Sci. Rep. 7 1
Google Scholar
[112] Mou J, Shen Z 2016 IEEE Trans. Antennas Propag. 65 696
Google Scholar
[113] Banadaki M D, Heidari A A, Nakhkash M 2017 IEEE Antennas Wirel. Propag. Lett. 17 205
Google Scholar
[114] Li W, Wei J, Wang W, Hu D, Li Y, Guan J 2016 Mater. Des. 110 27
Google Scholar
[115] 程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2012 61 134102
Google Scholar
Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102
Google Scholar
[116] Li W, Liu Q, Wang L, Zhou Z, Zheng J, Ying Y, Qiao L, Yu J, Qiao X, Che S 2018 AIP Adv. 8 015318
Google Scholar
[117] 许河秀 2019 超表面电磁调控机理与功能器件应用研究 (北京: 科学出版社)
Xu H X 2019 Investigations on Electromagnetic Wave Manipulations and Functional Device Applications Using Metasurfaces (Beijing: Science Press) (in Chinese)
[118] Sun J, Chen K, Ding G, Guo W, Zhao J, Feng Y, Jiang T 2019 IEEE Access 7 93919
Google Scholar
[119] Peng L, Li X F, Gao X, Jiang X, Li S M 2019 Opt. Mater. Express 9 687
Google Scholar
[120] Chen W, Chen R, Zhou Y, Ma Y 2019 IEEE Photonics Technol. Lett. 31 1187
Google Scholar
[121] 沈杨, 王甲富, 张介秋, 李勇峰, 郑麟, 庞永强, 屈绍波 2018 空军工程大学学报 (自然科学版) 19 39
Google Scholar
Shen Y, Wang J F, Zhang J Q, Li Y F, Zheng L, Pang Y Q, Qu S B 2018 J. Air Force Engineering Univ. (Nat. Sci. Ed.) 19 39
Google Scholar
[122] Wang J F, Qu S B, Xu Z, Fu Z T, Ma H, Yang Y M 2009 J. Phys. D: Appl. Phys. 42 155413
Google Scholar
[123] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华 2013 62 158102
Google Scholar
Lu Lei, Qu S B, Shi H Y, Zhang A X, Zhang J Q, Ma H 2013 Acta Phys. Sin. 62 158102
Google Scholar
[124] Xu H X, Wang G M, Tao Z, Cui T J 2014 Sci. Rep. 4 5744
[125] Xu H X, Wang G M, Ma K, Cui T J 2014 Adv. Opt. Mater. 2 572
Google Scholar
[126] 熊益军, 王岩, 王强, 王春齐, 黄小忠, 张芬, 周丁 2018 67 084202
Google Scholar
Xiong Y J, Wang Y, Wang Q, Wang C Q, Huang X Z, Zhang F, Zhou D 2018 Acta Phys. Sin. 67 084202
Google Scholar
[127] Lim D, Yu S, Lim S 2018 IEEE Access 6 43654
Google Scholar
[128] Jiang W, Yan L, Ma H, Fan Y, Wang J, Feng M, Qu S 2018 Sci. Rep. 8 4817
Google Scholar
[129] Xie J, Quader S, Xiao F, He C, Liang X, Geng J, Jin R, Zhu W, Rukhlenko I D 2019 IEEE Antennas Wirel. Propag. Lett. 18 536
Google Scholar
[130] 田小永, 尚振涛, 尹丽仙, 李涤尘 2019 航空制造技术 62 14
Google Scholar
Tian X Y, Shang Z T, Yin L X, Li D C 2019 Aeronaut. Manuf. Technol. 62 14
Google Scholar
[131] Rashid A K, Li B, Shen Z 2014 IEEE Antennas and Propag. Mag. 56 43
Google Scholar
[132] Yu Y, Shen Z, Deng T, Luo G 2017 IEEE Trans. Antennas Propag. 65 4363
Google Scholar
[133] Li W, Wu T, Wang W, Guan J, Zhai P 2014 Appl. Phys. Lett. 104 022903
Google Scholar
[134] Li M, Shen L, Jing L, Xu S, Zheng B, Lin X, Yang Y, Wang Z, Chen H 2019 Adv. Sci. 6 1901434
Google Scholar
[135] 梁彩云, 王志江 2018 航空材料学报 38 5
Google Scholar
Liang C Y, Wang Z J 2018 J. Aeronaut. Mater. 38 5
Google Scholar
计量
- 文章访问数: 31953
- PDF下载量: 1931
- 被引次数: 0