搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三乙胺分子构象与红外光谱的理论研究

邱梓恒 AhmedYousif Ghazal 龙金友 张嵩

引用本文:
Citation:

三乙胺分子构象与红外光谱的理论研究

邱梓恒, AhmedYousif Ghazal, 龙金友, 张嵩

Theoretical studies on molecular conformers and infrared spectra of triethylamine

Qiu Zi-Heng, Ahmed Yousif Ghazal, Long Jin-You, Zhang Song
PDF
HTML
导出引用
  • 利用密度泛函理论B3LYP的方法, 在6-311++G(d, p)基组水平上沿二面角ϕ1(C9N1C2C5)和ϕ2(C16N1C9C12)构成的二维坐标下扫描了–180°—180°范围内构象异构化势能面, 甄别出12种三乙胺基态异构体. 进一步辅以二阶微扰理论MP2的方法, 在相同基组水平下计算与优化6种能量较低的构象异构体的结构与能量. 结果表明具有C3对称性的G1与G1'是最稳定构象, 并识别出两种具有新的甲基取向的G4与G4'构象异构体. 另外, 通过G1—G4红外光谱与振动模式的比较, 分析了它们之间的相似性与差异性. G1—G4的红外谱线显示在0—1600 cm–1范围内的强度较弱, 而在2800—3300 cm–1范围内的强度较强, 标定出伞状振动与C—H伸缩振动等特征振动模, 不同构象所引起的红外谱峰的平均移动量小于20 cm–1.
    Based on the method of density functional theory B3LYP with a 6-311++G(d, p) basis set, the potential energy surface of conformational isomerization along the two-dimensional coordinates formed by the dihedral angles ϕ1(C9N1C2C5) and ϕ2(C16N1C9C12) in a range of –180°–180° is investigated. And 12 ground state conformers of triethylamine are identified. Furthermore,with the second-order Moller-Plesset perturbation theoryMP2 on the same basis set level, the structures of six lower-energy conformers are optimized and their energy values are estimated. The results show that G1 and G1' with C3 symmetry are the most stable conformers and G4 and G4' with new methyl orientations are identified. In addition, some vibrational modes in the infrared spectra of G1–G4 are assigned and discussed. The infrared spectra of G1–G4 show that the intensity is weak in a range of 0–1600 cm–1, while the intensity is strong in a range of 2800–3300 cm–1. The characteristic vibration modes such as umbrella vibration and CH stretching vibration are assigned. The average shift of the corresponding infrared peaks on different conformations is estimated at less than 20 cm–1.
      通信作者: 龙金友, longjy@wipm.ac.cn ; 张嵩, zhangsong@wipm.ac.cn
    • 基金项目: 科技部重点研发计划(批准号: 2019YFA0307700)和国家自然科学基金项目(批准号: 11974381, 21873114, 11774385, 21773299, 12074389)资助的课题.
      Corresponding author: Long Jin-You, longjy@wipm.ac.cn ; Zhang Song, zhangsong@wipm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307700) and the National Natural Science Foundation of China (Grant Nos. 11974381, 21873114, 11774385, 21773299, 12074389).
    [1]

    Park S T, Kim S K, Kim M S 2002 Nature 415 306Google Scholar

    [2]

    Kim M H, Shen L, Tao H, Martinez T J, Suits A G 2007 Science 315 1561Google Scholar

    [3]

    Gosselin J L, Weber P M 2005 J. Phys. Chem. A 109 4899Google Scholar

    [4]

    Deb S, Bayes B A, Minitti M P, Weber P M 2011 J. Phys. Chem. A 115 1804Google Scholar

    [5]

    Minitti M P, Weber P M 2007 Phys. Rev. Lett. 98 253004Google Scholar

    [6]

    Kuthirummal N, Weber P M 2003 Chem. Phys. Lett. 378 647Google Scholar

    [7]

    Kuthirummal N, Weber P M 2006 J. Mol. Struct. 787 163Google Scholar

    [8]

    Dian B C, Clarkson J R, Zwier T S 2004 Science 303 1169Google Scholar

    [9]

    Kumar K 1971 Chem. Phys. Lett. 9 504Google Scholar

    [10]

    Crocker C, Goggin P L 1978 J. Chem. Soc. Dalton Trans 388

    [11]

    Bushweller C H, Fleischman S H, Grady G L, McGoff P, Rithner C D, Whalon M R, Brennan J G, Marcantonio R P, Domingue R P 1982 J. Am. Chem. Soc. 104 6224Google Scholar

    [12]

    Fleischman S H, Weltin E E, Bushweller C H 1985 J. Comput. Chem. 6 249Google Scholar

    [13]

    Takeuchi H, Kojima T, Egawa T, Konaka S 1992 J. Phys. Chem. 96 4389Google Scholar

    [14]

    Grimme S 2011 Wiley Interdiscip. Rev. -Comput. Mol. Sci. 1 211Google Scholar

    [15]

    Grimme S, Hansen A, Brandenburg J G, Bannwarth C 2016 Chem. Rev. 116 5105Google Scholar

    [16]

    Sølling T I, Kötting C, Zewail A H 2003 J. Phys. Chem. A 107 10872Google Scholar

    [17]

    Cardoza J D, Rudakov F M, Weber P M 2008 J. Phys. Chem. A 112 10736Google Scholar

    [18]

    Deb S, Cheng X, Weber P M 2013 J. Phys. Chem. Lett. 4 2780Google Scholar

    [19]

    Cheng X, Zhang Y, Deb S, Minitti M P, Gao Y, Jónsson H, Weber P M 2014 Chem. Sci. 5 4394Google Scholar

    [20]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2009 Gaussian09 (Revision E.01)

    [21]

    Vosko S H, Wilk L, Nusair M 1980 Can. J. Phys. 58 1200Google Scholar

    [22]

    Krishnan R, Binkley J S, Seeger R, Pople J A 1980 J. Chem. Phys. 72 650Google Scholar

    [23]

    Møller C, Plesset M S 1934 Phys. Rev. 46 618Google Scholar

  • 图 1  三乙胺分子在笛卡尔坐标系下的结构示意图.

    Fig. 1.  Schematic structure of triethylamine in Cartesian coordinate system.

    图 2  沿二面角ϕ1(C9N1C2C5)与ϕ2(C16N1C9C12)构成的二维坐标扫描–180°—180°范围内三乙胺构象异构化势能面

    Fig. 2.  The conformational isomerization potential energy surface in the range of –180°–180° scanning along the two-dimensional coordinates formed by the dihedral angles of ϕ1 (C9N1C2C5) and ϕ2 (C16N1C9C12).

    图 3  基于B3LYP/6-311++G(d, p)水平计算得到的三乙胺的12种稳定构象异构体的分子结构

    Fig. 3.  The 12 stable conformers of triethylamine calculated on B3LYP/6-311++G(d, p) level.

    图 4  ϕ1 (–100°—180°)与ϕ2 (40°—180°)范围内的6种构象异构体的势能面

    Fig. 4.  The conformational isomerization potential energy surface of the six conformers in ϕ1(–100°–180°) and ϕ2 (40°–180°).

    图 5  在B3LYP/6-311++G(d, p)水平上计算得到的G1—G4构象异构体的红外光谱

    Fig. 5.  The infrared spectra of the G1–G4 conformers calculated at B3LYP/6-311++G(d, p) level.

    图 6  基于B3LYP/6-311++G(d, p)水平计算得到的G1—G4构象异构体的伞形振动(上排图)和C—H对称伸缩振动(下排图)及其频率

    Fig. 6.  The umbrella vibration mode (upper panel) and C—H symmetric stretch mode (lower panel) and their frequencies of the G1—G4 conformers calculated on B3LYP/6-311++G(d, p) level.

    表 1  基于B3LYP/6-311++G(d, p)水平计算得到的三乙胺的12种稳定构象异构体的二面角与能量

    Table 1.  The energies and dihedral angles of the 12 conformers of triethylamine calculated on B3LYP/6-311++G(d, p) level

    Conformersϕ1/(°)ϕ2/(°)ϕ3/(°)Energy/HartreeRelative E/meV
    G1 (GGG)155.42155.60155.64–292.5016690
    G1' (G'G'G')77.6777.6377.63–292.5016201.33
    G2 (TG'G')–66.6276.0263.21–292.50006143.76
    G3 (TGG)–64.76165.17151.59–292.50006143.76
    G4 (GG'G'')162.8567.24115.28–292.49982450.21
    G4' (G'G''G)67.24115.26162.86–292.49982450.21
    G5 (G'GT)–167.71–60.2865.25–292.49982650.15
    G6 (GGT)–75.99–63.2166.63–292.50006143.76
    G7 (G'G'T)–165.17–151.5964.75–292.50006143.76
    G8 (G'TG)60.28–65.24167.73–292.49982650.15
    G9 (GTG)151.58–64.74165.19–292.50006143.76
    G10 (TG'T)56.64–156.4876.67–292.497311118.59
    下载: 导出CSV

    表 2  三乙胺的6种稳定构象异构体在MP2/6-311++G(d, p)计算下的二面角与能量

    Table 2.  The energies and dihedral angles of the six stable conformers of triethylamine on the level of MP2/6-311++G(d, p)

    Conformersϕ1/(°)ϕ2/(°)ϕ3/(°)Energy/HartreeRelative E/meV
    G1 (GGG)157.62157.63157.63–291.5597370
    G1' (G'G'G')79.5379.5379.53–291.5597370
    G2 (TG'G')–66.9175.2757.80–291.55855932.06
    G3 (TGG)–59.62175.87158.42–291.55856331.95
    G4 (GG'G'')166.1167.66117.32–291.55851633.23
    G4' (G'G''G)67.74117.11166.19–291.55851733.20
    下载: 导出CSV

    表 3  基于B3LYP/6-311++G(d, p)水平计算得到的G1—G4构象异构体的振动模式与频率

    Table 3.  The vibrational modes and their frequencies of the G1-G4 conformers calculated on B3LYP/6-311++G(d, p) level

    ModesFrequency /cm–1Infrared /(arb. units)
    G1G2G3G4G1G2G3G4
    ν187.2255.0255.1050.350.15320.06390.06390.0004
    ν290.9887.4387.4196.490.19780.18570.18570.0238
    ν395.03109.27109.28140.350.10840.29320.29330.7795
    ν4188.06178.51178.54178.161.10112.08292.08301.1365
    ν5208.61203.62203.58205.940.07930.07170.07240.0393
    ν6214.02224.68224.73223.870.04680.06900.06870.1212
    ν7294.38268.43268.36256.331.09860.37580.37570.1000
    ν8304.06290.93290.98328.650.33301.02271.02251.6826
    ν9305.06331.61331.61332.280.33010.68970.69080.3791
    ν10427.73407.68407.74390.843.01841.92951.92861.8981
    ν11465.12465.26465.28449.381.92452.39562.39481.6278
    ν12466.51519.32519.35495.271.92726.04746.04640.2229
    ν13732.52721.09721.08734.0712.94029.48139.479710.9942
    ν14786.67769.53769.53763.173.83074.33714.34126.1536
    ν15787.30788.70788.71790.733.89212.63642.63461.2979
    ν16797.88799.48799.50799.560.06021.63821.63741.5619
    ν17907.63886.81886.80911.001.25131.67921.68061.3188
    ν18907.82906.38906.37911.591.24501.30851.31020.5529
    ν191002.59983.42983.411003.176.767711.073811.07395.7366
    ν201059.241035.021035.001056.0229.64668.27278.269718.7155
    ν211059.731059.501059.461058.6330.028830.839631.103416.0090
    ν221065.721062.071062.061069.233.21008.45808.216630.8172
    ν231078.101078.781078.771076.498.53843.61513.60281.3100
    ν241078.681090.021090.041102.408.319028.791128.78318.1051
    ν251145.201130.091130.091132.9712.068210.181910.182419.8481
    ν261208.091204.991204.961210.2123.088318.455318.441217.6571
    ν271208.581213.111213.111213.2623.173525.107925.119635.4460
    ν281295.981286.871286.861275.966.15435.50695.53464.4355
    ν291299.901291.741291.731307.0519.887019.047819.008520.9498
    ν301301.081338.301338.291319.2719.594913.327813.31061.2005
    ν311368.211352.091352.091354.631.991711.369011.392437.8361
    ν321369.161366.651366.641357.261.27723.08363.08215.3537
    ν331377.641375.361375.351377.690.31913.94513.94590.5963
    ν341388.041377.001377.001381.0617.850914.417914.426919.6423
    ν351388.151386.561386.551382.6418.374020.658020.628212.8529
    ν361388.871390.271390.261404.9819.794415.699815.69745.4524
    ν371457.171452.041452.051453.702.74734.84884.85655.2712
    ν381457.421458.811458.811455.341.69354.55494.53010.3420
    ν391457.691461.081461.081458.892.25722.77072.78673.6730
    ν401462.711465.681465.671462.411.85272.05382.05844.0415
    ν411470.311469.261469.251465.411.20483.41223.40140.0857
    ν421470.921470.191470.181473.121.53361.35961.37833.1465
    ν431480.411477.891477.881478.477.15902.92332.92491.5156
    ν441481.401480.621480.601484.667.015214.891614.885110.1121
    ν451485.831490.871490.861487.6812.43061.44781.447814.3785
    ν462840.182846.522846.552823.8723.244736.533136.750030.6694
    ν472840.742855.552855.622833.6723.3082133.4917133.2390190.3336
    ν482852.732964.142964.102931.98238.226828.925028.942052.7107
    ν492966.712965.862965.832961.4329.743322.593522.584224.4676
    ν502967.272967.802967.772962.1529.730326.933226.949532.0017
    ν512967.732969.712969.692966.6920.427726.668026.649955.0959
    ν523005.552985.782985.822967.5112.918819.017418.96079.9999
    ν533006.002999.962999.912982.6312.085816.248416.28801.3433
    ν543009.333003.923003.902993.290.06697.09677.122329.3355
    ν553025.883022.393022.353025.089.033139.484939.487951.7362
    ν563028.873026.723026.713026.9248.693215.024915.095024.4990
    ν573029.123029.643029.643028.6044.494961.755261.892954.1919
    ν583037.743031.733031.723036.4553.689942.246342.02513.3194
    ν593039.703037.263037.243037.3745.272952.335152.298769.7071
    ν603040.263040.203040.203041.4046.031644.498744.509331.7214
    下载: 导出CSV
    Baidu
  • [1]

    Park S T, Kim S K, Kim M S 2002 Nature 415 306Google Scholar

    [2]

    Kim M H, Shen L, Tao H, Martinez T J, Suits A G 2007 Science 315 1561Google Scholar

    [3]

    Gosselin J L, Weber P M 2005 J. Phys. Chem. A 109 4899Google Scholar

    [4]

    Deb S, Bayes B A, Minitti M P, Weber P M 2011 J. Phys. Chem. A 115 1804Google Scholar

    [5]

    Minitti M P, Weber P M 2007 Phys. Rev. Lett. 98 253004Google Scholar

    [6]

    Kuthirummal N, Weber P M 2003 Chem. Phys. Lett. 378 647Google Scholar

    [7]

    Kuthirummal N, Weber P M 2006 J. Mol. Struct. 787 163Google Scholar

    [8]

    Dian B C, Clarkson J R, Zwier T S 2004 Science 303 1169Google Scholar

    [9]

    Kumar K 1971 Chem. Phys. Lett. 9 504Google Scholar

    [10]

    Crocker C, Goggin P L 1978 J. Chem. Soc. Dalton Trans 388

    [11]

    Bushweller C H, Fleischman S H, Grady G L, McGoff P, Rithner C D, Whalon M R, Brennan J G, Marcantonio R P, Domingue R P 1982 J. Am. Chem. Soc. 104 6224Google Scholar

    [12]

    Fleischman S H, Weltin E E, Bushweller C H 1985 J. Comput. Chem. 6 249Google Scholar

    [13]

    Takeuchi H, Kojima T, Egawa T, Konaka S 1992 J. Phys. Chem. 96 4389Google Scholar

    [14]

    Grimme S 2011 Wiley Interdiscip. Rev. -Comput. Mol. Sci. 1 211Google Scholar

    [15]

    Grimme S, Hansen A, Brandenburg J G, Bannwarth C 2016 Chem. Rev. 116 5105Google Scholar

    [16]

    Sølling T I, Kötting C, Zewail A H 2003 J. Phys. Chem. A 107 10872Google Scholar

    [17]

    Cardoza J D, Rudakov F M, Weber P M 2008 J. Phys. Chem. A 112 10736Google Scholar

    [18]

    Deb S, Cheng X, Weber P M 2013 J. Phys. Chem. Lett. 4 2780Google Scholar

    [19]

    Cheng X, Zhang Y, Deb S, Minitti M P, Gao Y, Jónsson H, Weber P M 2014 Chem. Sci. 5 4394Google Scholar

    [20]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2009 Gaussian09 (Revision E.01)

    [21]

    Vosko S H, Wilk L, Nusair M 1980 Can. J. Phys. 58 1200Google Scholar

    [22]

    Krishnan R, Binkley J S, Seeger R, Pople J A 1980 J. Chem. Phys. 72 650Google Scholar

    [23]

    Møller C, Plesset M S 1934 Phys. Rev. 46 618Google Scholar

  • [1] 佟赞, 杨银利, 徐晶, 刘伟, 陈亮. 冠醚石墨烷对氦气分离性能的理论研究.  , 2023, 72(6): 068201. doi: 10.7498/aps.72.20222183
    [2] 崔子纯, 杨莫涵, 阮晓鹏, 范晓丽, 周峰, 刘维民. 高通量计算二维材料界面摩擦.  , 2023, 72(2): 026801. doi: 10.7498/aps.72.20221676
    [3] 邱子阳, 陈岩, 邱祥冈. 拓扑材料BaMnSb2的红外光谱学研究.  , 2022, 71(10): 107201. doi: 10.7498/aps.71.20220011
    [4] 李文涛, 袁美玲, 王杰敏. C++H2反应的动力学研究: 基于一个新构建的势能面.  , 2022, 71(9): 093402. doi: 10.7498/aps.71.20212241
    [5] 施斌, 袁荔, 唐天宇, 陆利敏, 赵先豪, 魏晓楠, 唐延林. 特丁基对苯二酚的光谱及密度泛函研究.  , 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [6] 赵文丽, 王永刚, 张路路, 岳大光, 孟庆田. 基于新CH2(${\tilde {\bf{X}}{}^3}{\bf{A''}}$)势能面的${\bf C}{\bf({}^3}{\bf{P})} + {\bf{H}_2(}{\bf X^1}\Sigma _{\bf g}^ + {\bf )} $ $ \to {\bf H({}^2}{\bf S}) + {\bf CH}{(\bf{}^2}\Pi ) $反应量子波包动力学.  , 2020, 69(8): 083401. doi: 10.7498/aps.69.20200132
    [7] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱.  , 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [8] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究.  , 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [9] 王安静, 方勇华, 李大成, 崔方晓, 吴军, 刘家祥, 李扬裕, 赵彦东. 面阵探测下的污染云团红外光谱仿真.  , 2017, 66(11): 114203. doi: 10.7498/aps.66.114203
    [10] 迟宝倩, 刘轶, 徐京城, 秦绪明, 孙辰, 白晟灏, 刘一璠, 赵新洛, 李小武. 石墨炔衍生物结构稳定性及电子结构的密度泛函理论研究.  , 2016, 65(13): 133101. doi: 10.7498/aps.65.133101
    [11] 杨雪, 闫冰, 连科研, 丁大军. 1,2-环己二酮基态光解离反应的理论研究.  , 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [12] 韩玉龙, 李真, 汪江洪, 凤尔银, 黄武英. Mg-CO体系的相互作用势和光谱预测.  , 2013, 62(9): 093101. doi: 10.7498/aps.62.093101
    [13] 李鑫, 羊梦诗, 叶志鹏, 陈亮, 徐灿, 储修祥. 甘氨酸色氨酸寡肽链的红外光谱的密度泛函研究.  , 2013, 62(15): 156103. doi: 10.7498/aps.62.156103
    [14] 刘晓东, 陶万军, 郑旭光, 萩原雅人, 孟冬冬, 张森林, 郭其新. 磁几何阻挫材料羟基氯化钴的中红外光谱特征.  , 2011, 60(3): 037803. doi: 10.7498/aps.60.037803
    [15] 逯振平, 韩 奎, 李海鹏, 张文涛, 黄志敏, 沈晓鹏, 张兆慧, 白 磊. 4-N-甲基苯乙烯砒啶盐衍生物振动超极化率的理论研究.  , 2007, 56(10): 5843-5848. doi: 10.7498/aps.56.5843
    [16] 余春日, 凤尔银, 程新路, 杨向东. He-HI复合物势能面及微分散射截面的理论研究.  , 2007, 56(8): 4441-4447. doi: 10.7498/aps.56.4441
    [17] 姜振益, 李盛涛. NiTi合金势能面的第一性原理研究.  , 2006, 55(11): 6032-6035. doi: 10.7498/aps.55.6032
    [18] 韩慧仙, 彭 谦, 文振翼, 王育彬. S2O分子的局域势能面和振动光谱的解析.  , 2005, 54(1): 78-84. doi: 10.7498/aps.54.78
    [19] 杨武保, 王久丽, 张谷令, 范松华, 刘赤子, 杨思泽. 丙酮环境下ECR微波等离子体辅助化学气相沉积类金刚石薄膜研究.  , 2004, 53(9): 3099-3103. doi: 10.7498/aps.53.3099
    [20] 王晓艳, 丁世良. 用李代数方法构造四原子分子的势能面.  , 2004, 53(2): 423-426. doi: 10.7498/aps.53.423
计量
  • 文章访问数:  6440
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-17
  • 修回日期:  2022-01-29
  • 上网日期:  2022-02-10
  • 刊出日期:  2022-05-20

/

返回文章
返回
Baidu
map