-
Four kinds of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics with different porosities are prepared, and the porosity effects on the depoling characteristics of those samples under shock wave load are investigated. The results show that under short circuit condition, the releasing current waveforms are in the form of square pulse for all samples. The amplitude of the current pulse decreases, but the width increases with the porosity increasing. The releasing charge decreases with the porosity increasing, which is consistent with the measurement by P-E loop. Porous ceramics has lower shock impedance, which improves the impedance match to the encapsulation medium. The depoling characteristics of those samples under high resistance load are simulated well by Lysne model. The results reveal that the dielectric constant of the sample is 4—5 times larger than that under static state, moreover, it decreases with porosity increasing. After the shock wave passing through the sample, the discharging time constant increases with porosity increasing. As the load increases, the rising edge becomes less steep for the restrain of the ferroelectric phase-antiferroelectric phase transformation under high electric field, and the breakdown happens to the dense ceramics.
-
Keywords:
- Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics /
- porosity /
- shock wave /
- depoling
[1] Dungan R H, Barnett H M, Stark A H 1962 J. Am. Ceram. Soc. 45 382
[2] Neilson F W 1957 Bull. Am. Phys. Soc. 2 302
[3] Tretyakov D V 2005 Instrum. Exp. Tech. 48 726
[4] Wang Y L, Yuan W Z, He G R, Lin S W, Ling R H, Qu C F 1983 Acta Phys. Sin. 32 780 (in Chinese) [王永龄、 袁万宗、 何国荣、 林盛卫、 凌荣华、 瞿翠凤1983 32 780]
[5] Doran D G 1968 J. Appl. Phys. 39 40
[6] Furnish M D, Chhabildas L C, Setchell R E, Montgomery S T 2000 AIP Conf. Proc. 505 975
[7] Lysne P C 1976 J. Appl. Phys. 48 1020
[8] Lysne P C 1977 J. Appl. Phys. 49 4565
[9] Setchell R E 2005 J. Appl. Phys. 97 013507
[10] Setchell R E 2007 J. Appl. Phys. 101 053525
[11] Zeng T, Dong X L, Mao C L, Liang R H, Yang H 2006 Acta Phys. Sin. 55 3073 (in Chinese) [曾 涛、 董显林、 毛朝梁、 梁瑞虹、 杨 洪 2006 55 3073] 〖12] Zeng T, Dong X L, Mao C L, Zhou Z Y, Yang H 2007 J. Eur. Ceram. Soc. 27 2025
[12] Yin Z W 2003 Dielectric Physics (Beijing: Science Press) p755 (in Chinese) [殷之文 2003电介质物理学 (北京: 科学出版社) 第755页]
[13] Lysne P C 1974 J. Appl. Phys. 46 231
[14] Banno H 1987 Am. Ceram. Soc. Bull. 66 1332
[15] Jiang D D, Du J M, Gu Y, Feng Y J 2008 Acta Phys. Sin. 57 565 (in Chinese)[蒋冬冬、 杜金梅、 谷 岩、 冯玉军 2008 57 565]
[16] Takch Y, Shkuratov S I, Talantsev E F, Dickens J C, Kristinansen M, Altgilbers L L 2002 IEEE Trans. Plasma Sci. 30 1665
[17] Zavattieri P D, Espinosa H D 2001 Acta Mater. 49 4291
[18] Setchell R E 2003 J. Appl. Phys. 94 573
-
[1] Dungan R H, Barnett H M, Stark A H 1962 J. Am. Ceram. Soc. 45 382
[2] Neilson F W 1957 Bull. Am. Phys. Soc. 2 302
[3] Tretyakov D V 2005 Instrum. Exp. Tech. 48 726
[4] Wang Y L, Yuan W Z, He G R, Lin S W, Ling R H, Qu C F 1983 Acta Phys. Sin. 32 780 (in Chinese) [王永龄、 袁万宗、 何国荣、 林盛卫、 凌荣华、 瞿翠凤1983 32 780]
[5] Doran D G 1968 J. Appl. Phys. 39 40
[6] Furnish M D, Chhabildas L C, Setchell R E, Montgomery S T 2000 AIP Conf. Proc. 505 975
[7] Lysne P C 1976 J. Appl. Phys. 48 1020
[8] Lysne P C 1977 J. Appl. Phys. 49 4565
[9] Setchell R E 2005 J. Appl. Phys. 97 013507
[10] Setchell R E 2007 J. Appl. Phys. 101 053525
[11] Zeng T, Dong X L, Mao C L, Liang R H, Yang H 2006 Acta Phys. Sin. 55 3073 (in Chinese) [曾 涛、 董显林、 毛朝梁、 梁瑞虹、 杨 洪 2006 55 3073] 〖12] Zeng T, Dong X L, Mao C L, Zhou Z Y, Yang H 2007 J. Eur. Ceram. Soc. 27 2025
[12] Yin Z W 2003 Dielectric Physics (Beijing: Science Press) p755 (in Chinese) [殷之文 2003电介质物理学 (北京: 科学出版社) 第755页]
[13] Lysne P C 1974 J. Appl. Phys. 46 231
[14] Banno H 1987 Am. Ceram. Soc. Bull. 66 1332
[15] Jiang D D, Du J M, Gu Y, Feng Y J 2008 Acta Phys. Sin. 57 565 (in Chinese)[蒋冬冬、 杜金梅、 谷 岩、 冯玉军 2008 57 565]
[16] Takch Y, Shkuratov S I, Talantsev E F, Dickens J C, Kristinansen M, Altgilbers L L 2002 IEEE Trans. Plasma Sci. 30 1665
[17] Zavattieri P D, Espinosa H D 2001 Acta Mater. 49 4291
[18] Setchell R E 2003 J. Appl. Phys. 94 573
Catalog
Metrics
- Abstract views: 8935
- PDF Downloads: 892
- Cited By: 0