搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通过AC-HVAF方法制备铁基非晶合金涂层的结构分析

叶凤霞 陈燕 余鹏 罗强 曲寿江 沈军

引用本文:
Citation:

通过AC-HVAF方法制备铁基非晶合金涂层的结构分析

叶凤霞, 陈燕, 余鹏, 罗强, 曲寿江, 沈军

Structured analysis of iron-based amorphous alloy coating deposited by AC-HVAF spray

Ye Feng-Xia, Chen Yan, Yu Peng, Luo Qiang, Qu Shou-Jiang, Shen Jun
PDF
导出引用
  • 本研究通过活性燃烧高速燃气喷涂(AC-HVAF)方法制备出了均匀致密的铁基非晶化合金涂层. 通过调制AC-HVAF喷涂过程的工艺参数,研究了喷涂枪长、喷涂距离和送粉率对涂层非晶化程度的影响,得出控制枪长是形成高质量非晶化涂层的关键,而喷涂距离和送粉率决定了涂层的厚度和形成速率. 制备出的铁基非晶合金与基体结合致密,孔隙率较低,完全的非晶化结构有效的保持了铁基非晶合金优异的力学性能,可以对基体材料进行很好的防护.
    The uniform and compact Fe-based amorphous alloy coating was prepared by active combustion high velocity air fuel (AC-HVAF) spray method. By tuning the parameters of AC-HVAF spray process, the influence of the spraying gun length, spraying distance, and powder feed rate on non-crystallization has been studied carefully. Results indicate that spraying gun length is the key factor in forming perfect amorphous coating. Spraying distance and powder feed rate may determine the thickness and formation rate of the coating. The prepared coatings have a tight adhesion with the substrate, low porosity, and good non-crystallization, which would effectively maintain the excellent mechanical properties of the Fe-based amorphous alloy. The coating can provide a good protection for the substrate material.
    • 基金项目: 国家自然科学基金(批准号:51101178,51274151)、重庆市基础与前沿研究计划杰青项目(批准号:cstc2013jcyjjq50002)和重庆市教委自然科学基金(批准号:KJ120610)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51101178, 51274151), the Outstanding Youth Project of the Basic and Frontier Research Program of Chongqing, China (Grant No. cstc2013jcyjjq50002), and the Natural Science Foundation of Chongqing Municipal Education Commission, China (Grant No. KJ120610).
    [1]

    Pang S J, Zhang T, Asami A, Inoue A 2002 Acta Mater. 50 489

    [2]

    Telford M 2004 Mater. Today 3 36

    [3]

    Lu Z P, Liu C T, Thompson J R, Porter W D 2004 Phys. Rev. Lett. 92 245503

    [4]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [5]

    Yu P, Bai H Y, Tang M B, Wang W L, Wang W H 2005 Acta Phys. Sin. 54 3284 (in Chinese)[余鹏, 白海洋, 汤美波, 王万录, 汪卫华2005 54 3284]

    [6]

    Chen M W 2011 NPG Asia Mater. 3 82

    [7]

    Schroers J 2005 JOM 57 35

    [8]

    Zhang B, Zhao D Q, Pan M X, Wang W H, Greer A L 2005 Phys. Rev. Lett. 94 205502

    [9]

    Trexler M M, Thadhani N N 2010 Prog. Mater. Sci. 55 759

    [10]

    Rong C B, Zhao Y H, Xu M, Zhao H H, Cheng L Z, He K Y 2001 Acta Phys. Sin. 50 2235 (in Chinese)[荣传兵, 赵玉华, 徐民, 赵恒和, 程力智, 何开元2001 50 2235]

    [11]

    Nassima S, Badis B, Gabriel L, Alberto C, Marcello B 2012 Chin. Phys. Lett. 29 118102

    [12]

    Chen Q J, Shen J, Fan H B, Sun J F, Huang Y J, Mccartney D G 2005 Chin. Phys. Lett. 22 1736

    [13]

    Koutsky J 2004 J. Mater. Process Techn. 157-158 557

    [14]

    Wielage B, Wank A, Pokmurska H, Grund T, Rupprecht C, Reisel G, Friesen E 2006 Surf. Coat. Techn. 201 2032

    [15]

    Chen Z G, Zhu X R, Tang X L, Kong D J, Wang L 2007 Acta Phys. Sin. 56 7320 (in Chinese)[陈志刚, 朱小蓉, 汤小丽, 孔德军, 王玲2007 56 7320]

    [16]

    Guo R Q, Zhang C, Chen Q, Yang Y, Li N, Liu L 2011 Corr. Sci. 53 2351

    [17]

    Zhou Z, Wang L, Wang F C, Liu Y B 2009 Trans. Nonferr. Mater. Soc. Chin. 19 s634

    [18]

    Zhang C, Wu Y, Liu L 2012 Appl. Phys. Lett. 101 121603

    [19]

    Heimann R B, Lehmann H D 2008 Rec. Pat. Mater. Sci. 1 41

    [20]

    Stoica V, Ahmed R, Itsukaichi T, Tobe S 2004 Wear 257 1103

    [21]

    Qiao Y F, Fischer T E, Dent A 2003 Surf. Coat. Techn. 172 24

    [22]

    Liu X Q, Zheng Y G, Chang X C, Hou W L, Wang J Q, Tang Z, Burgess A 2009 J. Alloy. Comp. 484 300

    [23]

    Pierlot C, Pawlowski L, Bigan M, Chagnon P 2008 Surf. Coat. Techn. 202 4483

    [24]

    Wang T G, Zhao S S, Hua W G, Gong J, Sun C 2009 Surf. Coat. Techn. 203 1637

    [25]

    Otsubo F, Kishitake K 2005 Mater. Trans. 46 80

    [26]

    Zhang F G, Zhou H Q, Hu J, Shao J L, Zhang G C, Hong T, He B 2012 Chin. Phys. B 21 094601

    [27]

    Zhang C, Chan K C, Wu Y, Liu L 2012 Acta Mater. 60 4152

  • [1]

    Pang S J, Zhang T, Asami A, Inoue A 2002 Acta Mater. 50 489

    [2]

    Telford M 2004 Mater. Today 3 36

    [3]

    Lu Z P, Liu C T, Thompson J R, Porter W D 2004 Phys. Rev. Lett. 92 245503

    [4]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [5]

    Yu P, Bai H Y, Tang M B, Wang W L, Wang W H 2005 Acta Phys. Sin. 54 3284 (in Chinese)[余鹏, 白海洋, 汤美波, 王万录, 汪卫华2005 54 3284]

    [6]

    Chen M W 2011 NPG Asia Mater. 3 82

    [7]

    Schroers J 2005 JOM 57 35

    [8]

    Zhang B, Zhao D Q, Pan M X, Wang W H, Greer A L 2005 Phys. Rev. Lett. 94 205502

    [9]

    Trexler M M, Thadhani N N 2010 Prog. Mater. Sci. 55 759

    [10]

    Rong C B, Zhao Y H, Xu M, Zhao H H, Cheng L Z, He K Y 2001 Acta Phys. Sin. 50 2235 (in Chinese)[荣传兵, 赵玉华, 徐民, 赵恒和, 程力智, 何开元2001 50 2235]

    [11]

    Nassima S, Badis B, Gabriel L, Alberto C, Marcello B 2012 Chin. Phys. Lett. 29 118102

    [12]

    Chen Q J, Shen J, Fan H B, Sun J F, Huang Y J, Mccartney D G 2005 Chin. Phys. Lett. 22 1736

    [13]

    Koutsky J 2004 J. Mater. Process Techn. 157-158 557

    [14]

    Wielage B, Wank A, Pokmurska H, Grund T, Rupprecht C, Reisel G, Friesen E 2006 Surf. Coat. Techn. 201 2032

    [15]

    Chen Z G, Zhu X R, Tang X L, Kong D J, Wang L 2007 Acta Phys. Sin. 56 7320 (in Chinese)[陈志刚, 朱小蓉, 汤小丽, 孔德军, 王玲2007 56 7320]

    [16]

    Guo R Q, Zhang C, Chen Q, Yang Y, Li N, Liu L 2011 Corr. Sci. 53 2351

    [17]

    Zhou Z, Wang L, Wang F C, Liu Y B 2009 Trans. Nonferr. Mater. Soc. Chin. 19 s634

    [18]

    Zhang C, Wu Y, Liu L 2012 Appl. Phys. Lett. 101 121603

    [19]

    Heimann R B, Lehmann H D 2008 Rec. Pat. Mater. Sci. 1 41

    [20]

    Stoica V, Ahmed R, Itsukaichi T, Tobe S 2004 Wear 257 1103

    [21]

    Qiao Y F, Fischer T E, Dent A 2003 Surf. Coat. Techn. 172 24

    [22]

    Liu X Q, Zheng Y G, Chang X C, Hou W L, Wang J Q, Tang Z, Burgess A 2009 J. Alloy. Comp. 484 300

    [23]

    Pierlot C, Pawlowski L, Bigan M, Chagnon P 2008 Surf. Coat. Techn. 202 4483

    [24]

    Wang T G, Zhao S S, Hua W G, Gong J, Sun C 2009 Surf. Coat. Techn. 203 1637

    [25]

    Otsubo F, Kishitake K 2005 Mater. Trans. 46 80

    [26]

    Zhang F G, Zhou H Q, Hu J, Shao J L, Zhang G C, Hong T, He B 2012 Chin. Phys. B 21 094601

    [27]

    Zhang C, Chan K C, Wu Y, Liu L 2012 Acta Mater. 60 4152

  • [1] 余秀冬, 刘海顺, 薛琳, 张响, 杨卫明. 铁基非晶条带催化降解性能的退火晶化调控机理.  , 2024, 73(9): 098801. doi: 10.7498/aps.73.20240249
    [2] 李俊炜, 贾维敏, 吕沙沙, 魏雅璇, 李正操, 王金涛. 氢气在γ-U (100) /Mo表面吸附行为的第一性原理研究.  , 2022, 71(22): 226601. doi: 10.7498/aps.71.20220631
    [3] 廖庆, 李炳生, 葛芳芳, 张宏鹏, 申铁龙, 毛雪丽, 王任大, 盛彦斌, 常海龙, 王志光, 徐帅, 陈黎明, 何晓珣. T91钢和SIMP钢表面AlOx涂层在600 ℃静态液态铅铋共晶中的稳定性和腐蚀行为.  , 2022, 71(15): 156103. doi: 10.7498/aps.71.20220356
    [4] 郭晓蒙, 青芳竹, 李雪松. 石墨烯在金属表面防腐中的应用.  , 2021, 70(9): 098102. doi: 10.7498/aps.70.20210349
    [5] 曾建邦, 郭雪莹, 刘立超, 沈祖英, 单丰武, 罗玉峰. 基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制.  , 2019, 68(1): 018201. doi: 10.7498/aps.68.20181726
    [6] 蒋招绣, 辛铭之, 申海艇, 王永刚, 聂恒昌, 刘雨生. 多孔未极化Pb(Zr0.95Ti0.05)O3铁电陶瓷单轴压缩力学响应与相变.  , 2015, 64(13): 134601. doi: 10.7498/aps.64.134601
    [7] 卢璐, 吉鸿飞, 郭各朴, 郭霞生, 屠娟, 邱媛媛, 章东. 超声增强藻酸钙凝胶支架材料孔隙率的研究.  , 2015, 64(2): 024301. doi: 10.7498/aps.64.024301
    [8] 李文胜, 罗时军, 黄海铭, 张琴, 付艳华. 一种基于光子晶体结构的坦克涂层设计.  , 2012, 61(16): 164102. doi: 10.7498/aps.61.164102
    [9] 孙鹏, 胡明, 刘博, 孙凤云, 许路加. 金属/多孔硅/单晶硅(M/PS/Si)微结构的电学特性.  , 2011, 60(5): 057303. doi: 10.7498/aps.60.057303
    [10] 胡卫强, 刘宗德, 王永田, 夏兴祥. 快冷熔覆法原位合成大厚度铁基非晶复合涂层的研究.  , 2011, 60(2): 027103. doi: 10.7498/aps.60.027103
    [11] 许路加, 胡明, 杨海波, 杨孟琳, 张洁. 基于微结构参数建模的多孔硅绝热层热导率研究.  , 2010, 59(12): 8794-8800. doi: 10.7498/aps.59.8794
    [12] 冯宁博, 谷岩, 刘雨生, 聂恒昌, 陈学锋, 王根水, 贺红亮, 董显林. 冲击波加载下孔隙率对Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 铁电陶瓷去极化性能的影响.  , 2010, 59(12): 8897-8902. doi: 10.7498/aps.59.8897
    [13] 张新明, 刘家琦, 刘克安. 一维双相介质孔隙率的小波多尺度反演.  , 2008, 57(2): 654-660. doi: 10.7498/aps.57.654
    [14] 张拴勤, 石云龙, 黄长庚, 连长春. 隐身涂层的光谱反射特性设计.  , 2007, 56(9): 5508-5512. doi: 10.7498/aps.56.5508
    [15] 邸玉贤, 计欣华, 胡 明, 秦玉文, 陈金龙. 基片曲率法在多孔硅薄膜残余应力检测中的应用.  , 2006, 55(10): 5451-5454. doi: 10.7498/aps.55.5451
    [16] 张永康, 孔德军, 冯爱新, 鲁金忠, 葛 涛. 涂层界面结合强度检测研究(Ⅱ):涂层结合界面应力检测系统.  , 2006, 55(11): 6008-6012. doi: 10.7498/aps.55.6008
    [17] 孙友梅, 朱智勇, 王志光, 刘 杰, 张崇宏, 金运范. 热峰模型在聚碳酸酯非晶化潜径迹中的应用.  , 2005, 54(4): 1707-1710. doi: 10.7498/aps.54.1707
    [18] 李印峰, 陈笃行, 沈保根, M.VAZQUEZ, A.HERNANDO. 非晶态铁基合金退火样品的偏移回线.  , 2001, 50(5): 953-957. doi: 10.7498/aps.50.953
    [19] 何正明, 赵妙余, 张玲芬, 汪晓光. 铁基非晶合金磁致伸缩的温度效应.  , 1990, 39(4): 656-660. doi: 10.7498/aps.39.656
    [20] 车广灿, 沈保根, 赵见高, 詹文山, 梁敬魁. 组份对铁基非晶合金晶化温度的影响.  , 1987, 36(4): 483-489. doi: 10.7498/aps.36.483
计量
  • 文章访问数:  6510
  • PDF下载量:  871
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-03
  • 修回日期:  2014-01-02
  • 刊出日期:  2014-04-05

/

返回文章
返回
Baidu
map