-
The present study systematically investigates by experiment the influence of Reynolds number (Re) on a turbulent jet issuing from a smoothly-contracting round nozzle. Measurements were performed for seven Reynolds numbers varying from Re = 4,050 to Re = 20,100 using single hot-wire anemometry and over an axial distance of 30 nozzle exit diameters. Although all the exit velocity profiles are of "top-hat" shape, these measurements reveal significant dependence on Re of the exit and downstream flows. The effect of Re on both the mean and turbulent fields is substantial for Re < 10,000 and becomes weak beyond Re = 10,000. The length of the jet’s potential core and the far-field rates of decay and spread all depend significantly on Re.
-
Keywords:
- Reynolds number /
- round jet /
- hot wire anemometer
[1] Mi J, Nobes D S, Nathan G J 2001 J. Fluid Mech.432 91
[2] Panchapakesan N R, Lumley J L 1993 J. Fluid Mech.246 197
[3] Hussein H, Capp S, George W 1994 J. Fluid Mech.258 31
[4] Pope S 2000 Turbulent flows (Cambridge: Cambridge Univ. Press) p101
[5] Ricou F, Spalding D B 1961 J. Fluid Mech.11 21
[6] Dimotakis P E 2000 J. Fluid Mech.409 69
[7] Malmstrom T, Kirkpatrick A, Christensen B, Knappmiller K 1997 J. Fluid Mech.346 363
[8] Todde V, Spazzini P, Sandberg M 2009 Expt. Fluids 1
[9] Kwon S J, Seo I W 2005 Expt. Fluids 38 801
[10] Fellouah H, Ball C G, Pollard A 2009 Int. J. Heat Mass Transfer 52 3943
[11] Bogey C, Bailly C 2006 Phys. Fluids 18 065101
[12] Wygnanski I, Fiedler H 1969 J. Fluid Mech. 38 577
[13] Quinn W R 2005 Eur. J. Mech. B Fluids 25 279
[14] Deo R C, Mi J, Nathan G J 2008 Phys. Fluids 20 075108
[15] Zhou P Y 1959 Acta Phy. Sin. 13 220 (in Chinese) [周培源 1959 13 220]
[16] Zhuang F G 1953 Acta Phy. Sin. 9 201 (in Chinese) [庄逢甘 1953 9 201]
[17] Mi J, Feng B, Deo R C, Nathan G J 2009 Acta Phy. Sin.58 354 (in Chinese) [米建春、冯宝平、Deo R C、Nathan G J 2009 58 354]
-
[1] Mi J, Nobes D S, Nathan G J 2001 J. Fluid Mech.432 91
[2] Panchapakesan N R, Lumley J L 1993 J. Fluid Mech.246 197
[3] Hussein H, Capp S, George W 1994 J. Fluid Mech.258 31
[4] Pope S 2000 Turbulent flows (Cambridge: Cambridge Univ. Press) p101
[5] Ricou F, Spalding D B 1961 J. Fluid Mech.11 21
[6] Dimotakis P E 2000 J. Fluid Mech.409 69
[7] Malmstrom T, Kirkpatrick A, Christensen B, Knappmiller K 1997 J. Fluid Mech.346 363
[8] Todde V, Spazzini P, Sandberg M 2009 Expt. Fluids 1
[9] Kwon S J, Seo I W 2005 Expt. Fluids 38 801
[10] Fellouah H, Ball C G, Pollard A 2009 Int. J. Heat Mass Transfer 52 3943
[11] Bogey C, Bailly C 2006 Phys. Fluids 18 065101
[12] Wygnanski I, Fiedler H 1969 J. Fluid Mech. 38 577
[13] Quinn W R 2005 Eur. J. Mech. B Fluids 25 279
[14] Deo R C, Mi J, Nathan G J 2008 Phys. Fluids 20 075108
[15] Zhou P Y 1959 Acta Phy. Sin. 13 220 (in Chinese) [周培源 1959 13 220]
[16] Zhuang F G 1953 Acta Phy. Sin. 9 201 (in Chinese) [庄逢甘 1953 9 201]
[17] Mi J, Feng B, Deo R C, Nathan G J 2009 Acta Phy. Sin.58 354 (in Chinese) [米建春、冯宝平、Deo R C、Nathan G J 2009 58 354]
Catalog
Metrics
- Abstract views: 10109
- PDF Downloads: 1295
- Cited By: 0