搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超临界雷诺数区间内二维圆柱绕流的实测研究

程霄翔 赵林 葛耀君

引用本文:
Citation:

高超临界雷诺数区间内二维圆柱绕流的实测研究

程霄翔, 赵林, 葛耀君

Field measurements on flow past a circular cylinder in transcritical Reynolds number regime

Cheng Xiao-Xiang, Zhao Lin, Ge Yao-Jun
PDF
导出引用
  • 实测强风工况下高度167 m的徐州彭城电厂冷却塔的表面风荷载,并归纳历史上其他研究人员给出的实测结果,以丰富高超临界雷诺数(Re)区间二维圆柱绕流的试验成果.在低湍流度均匀流场和高湍流度大气边界层流场中分别开展4种风速8类粗糙度条件下的冷却塔刚性模型测压风洞试验,通过对比低雷诺数(Re=2.11054.19105)条件下的风洞试验结果和高雷诺数(Re=5.41071108)条件下的现场实测结果研究各种静动态绕流特征随雷诺数的变化规律,重点考察雷诺数无关现象的产生条件.研究结果表明,对于物表相对粗糙度在0.01以上的圆柱绕流,雷诺数不相关现象存在于很宽的雷诺数范围(2105Re1108)内;增大来流湍流度亦能引起的雷诺数无关现象,但此时该现象可能仅存在于一个较窄的低雷诺数范围内.
    Flow around a circular cylinder is a classic scenario which invariably draws the attention of the fluid mechanics circle, because its relevant studies are of both theoretical and practical significances. However, most experiments are conducted below transcritical Reynolds number(Re) regime(Re3.5106) due to the limitations of the wind tunnel modeling technique, which makes the obtained results inapplicable to some full-scale conditions. To this end, the field measurements for wind-induced pressures on a 167-meter high large cooling tower are conducted at Re=6.59107 to enrich the experimental results of flow past a circular cylinder in transcritical Re regime. Besides, the wind effects at low Re(Re=2.1105-4.19105) are also obtained by tests on a 1:200 rigid cooling tower model in a wind tunnel with considering 4 types of wind speeds, 8 types of surface roughness, and 2 flow fields. Employing the data obtained from both field measurements and wind tunnel model tests, the variations of static/dynamic flow characteristics with Re increasing are studied. It is found that 1) with the increase of Re, the drag coefficient for the smooth-walled tower in the uniform flow field decreases dramatically in the critical Re regime and increases slowly in the supercritical regime, which accord with Roshko's and Achenbach's results; 2) for smooth-walled tower, both the base pressure coefficient and pressure coefficient increase significantly with the increase of Re in critical and supercritical regimes, which qualitatively accord with Shih's results; and 3) the finding of the Strouhal number is supportive to Shih's result(i.e., shedding from the rough cylinder persists throughout the Re range tested). More importantly, special attention is paid to the Re-independence phenomenon of fluid flow, which is a typical phenomenon occurring in transcritical Re regime. Results indicate that the Re-independence exists in an Re range from 2105 to 1108 for a circular cylinder with a relative roughness greater than 0.01, and the increased free-stream turbulence can also induce Re-independence which probably exists in a narrow low Re range. Considering the flow mechanism, a reasonable explanation can be found for the Re-independence phenomenon, i.e., the critical and supercritical regimes narrow and move to lower Re range with the increase of surface roughness or the increase of free-stream turbulence, so Re independence can occur at a very low Re.
      通信作者: 葛耀君, yaojunge@tongji.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51222809,51178353)、科技部重大科技项目(批准号:2009ZX06004-010-HYJY-21)和教育部新世纪优秀人才支持计划资助的课题.
      Corresponding author: Ge Yao-Jun, yaojunge@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 51222809, 51178353), the National Key Basic Research Program of China(Grant No. 2009ZX06004-010-HYJY-21), and the Program for New Century Excellent Talents in University of Ministry of Education of China.
    [1]

    Roshko A 1961 J. Fluid Mech. 10 345

    [2]

    Achenbach E 1968 J. Fluid Mech. 34 625

    [3]

    Dragoiescu C, Xie J, Kelly D 2011 13th International Conference on Wind Engineering Amsterdam, Netherlands, July 11-15, 2011 p1023

    [4]

    Matsuda K, Cooper D R, Tanaka H, Tokushige M, Iwasaki T 2001 J. Wind Eng. Ind. Aerodyn. 89 619

    [5]

    Niemann H J 1971 Zur Stationären Windbelastung Rotations-symmetrischer Bauwerke Im Bereich Transkritischer Reynoldszahlen Techn.-wiss. Mitt. Nr. 71-2, Inst. fr Konstr. Ingenieurbau, Ruhr-Universität Bochum, West Germany(in German)

    [6]

    Sollenberger N J, Scanlan R H 1974 Proceedings of the Symposium on Full-scale Measurements of Wind Effects University of Western Ontario, Canada, February 2-5, p79

    [7]

    Sun T F, Zhou L M 1983 J. Wind Eng. Ind. Aerodyn. 14 181

    [8]

    Ruscheweyh H 1975 J. Wind Eng. Ind. Aerodyn. 1 335

    [9]

    Pirner M 1982 J. Wind Eng. Ind. Aerodyn. 10 343

    [10]

    Niemann H J, Propper H 1975 976 J. Ind. Aerodyn. 1 349

    [11]

    Shih W C L, Wang C, Coles D, Roshko A 1993 J. Wind Eng. Ind. Aerodyn. 49 351

    [12]

    Simiu E, Scanlan R H 1996 Wind Effects on Structures-Fundamentals and Applications to Design, Third Edition (New York:John Wiley & Sons, INC) p406

    [13]

    Cheng X X, Zhao L, Ge Y J, Ke S T, Liu X P 2015 Adv. Struct. Eng. 18 201

    [14]

    Liu X P 2013 M. S. Dissertation (Shanghai, China:Tongji University)(in Chinese)[刘晓鹏2013硕士学位论文(上海:同济大学)]

    [15]

    Gu Z F, Sun T F, He D X, Zhang L L 1992 Acta Mech. Sin. 24 522(in Chinese)[顾志福, 孙天风, 贺德馨, 张亮亮1992力学学报24 522]

    [16]

    Achenbach E 1971 J. Fluid Mech. 46 321

    [17]

    Schewe G 1983 J. Fluid Mech. 133 265

    [18]

    Niemann H J, Hölscher N 1990 J. Wind Eng. Ind. Aerodyn. 33 197

    [19]

    Farell C 1981 J. Eng. Mech. ASCE 107 565

    [20]

    Basu R I 1986 J. Wind Eng. Ind. Aerodyn. 24 33

    [21]

    Bearman P W 1968 The Flow around a Circular Cylinder in the Critical Reynolds Number Regime NPL Aero Report 1257

    [22]

    Kiya M, Suzuki Y, Arie M, Hagino M 1982 J. Fluid Mech. 115 151

    [23]

    Cheung J C K, Melbourne W H 1983 J. Wind Eng. Ind. Aerodyn. 14 399

  • [1]

    Roshko A 1961 J. Fluid Mech. 10 345

    [2]

    Achenbach E 1968 J. Fluid Mech. 34 625

    [3]

    Dragoiescu C, Xie J, Kelly D 2011 13th International Conference on Wind Engineering Amsterdam, Netherlands, July 11-15, 2011 p1023

    [4]

    Matsuda K, Cooper D R, Tanaka H, Tokushige M, Iwasaki T 2001 J. Wind Eng. Ind. Aerodyn. 89 619

    [5]

    Niemann H J 1971 Zur Stationären Windbelastung Rotations-symmetrischer Bauwerke Im Bereich Transkritischer Reynoldszahlen Techn.-wiss. Mitt. Nr. 71-2, Inst. fr Konstr. Ingenieurbau, Ruhr-Universität Bochum, West Germany(in German)

    [6]

    Sollenberger N J, Scanlan R H 1974 Proceedings of the Symposium on Full-scale Measurements of Wind Effects University of Western Ontario, Canada, February 2-5, p79

    [7]

    Sun T F, Zhou L M 1983 J. Wind Eng. Ind. Aerodyn. 14 181

    [8]

    Ruscheweyh H 1975 J. Wind Eng. Ind. Aerodyn. 1 335

    [9]

    Pirner M 1982 J. Wind Eng. Ind. Aerodyn. 10 343

    [10]

    Niemann H J, Propper H 1975 976 J. Ind. Aerodyn. 1 349

    [11]

    Shih W C L, Wang C, Coles D, Roshko A 1993 J. Wind Eng. Ind. Aerodyn. 49 351

    [12]

    Simiu E, Scanlan R H 1996 Wind Effects on Structures-Fundamentals and Applications to Design, Third Edition (New York:John Wiley & Sons, INC) p406

    [13]

    Cheng X X, Zhao L, Ge Y J, Ke S T, Liu X P 2015 Adv. Struct. Eng. 18 201

    [14]

    Liu X P 2013 M. S. Dissertation (Shanghai, China:Tongji University)(in Chinese)[刘晓鹏2013硕士学位论文(上海:同济大学)]

    [15]

    Gu Z F, Sun T F, He D X, Zhang L L 1992 Acta Mech. Sin. 24 522(in Chinese)[顾志福, 孙天风, 贺德馨, 张亮亮1992力学学报24 522]

    [16]

    Achenbach E 1971 J. Fluid Mech. 46 321

    [17]

    Schewe G 1983 J. Fluid Mech. 133 265

    [18]

    Niemann H J, Hölscher N 1990 J. Wind Eng. Ind. Aerodyn. 33 197

    [19]

    Farell C 1981 J. Eng. Mech. ASCE 107 565

    [20]

    Basu R I 1986 J. Wind Eng. Ind. Aerodyn. 24 33

    [21]

    Bearman P W 1968 The Flow around a Circular Cylinder in the Critical Reynolds Number Regime NPL Aero Report 1257

    [22]

    Kiya M, Suzuki Y, Arie M, Hagino M 1982 J. Fluid Mech. 115 151

    [23]

    Cheung J C K, Melbourne W H 1983 J. Wind Eng. Ind. Aerodyn. 14 399

  • [1] 季梦, 尤云祥, 韩盼盼, 邱小平, 马乔, 吴凯健. 亚临界区圆柱绕流相干结构壁面模化混合RANS/LES模型.  , 2024, 73(5): 054701. doi: 10.7498/aps.73.20231745
    [2] 黄亚冬, 王智河, 周本谋. 圆柱绕流尾迹转捩电磁力控制研究.  , 2022, 71(22): 224702. doi: 10.7498/aps.71.20221357
    [3] 陈蒋力, 陈少强, 任峰, 胡海豹. 基于壁面压力反馈的圆柱绕流减阻智能控制.  , 2022, 71(8): 084701. doi: 10.7498/aps.71.20212171
    [4] 黄皓伟, 梁宏, 徐江荣. 表面张力对高雷诺数Rayleigh-Taylor不稳定性后期增长的影响.  , 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [5] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟.  , 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [6] 林黎明. 低雷诺数下钝体三维尾迹中的涡量符号律.  , 2020, 69(3): 034701. doi: 10.7498/aps.69.20191011
    [7] 丁明松, 江涛, 刘庆宗, 董维中, 高铁锁, 傅杨奥骁. 基于电流积分计算磁矢量势修正的低磁雷诺数方法.  , 2020, 69(13): 134702. doi: 10.7498/aps.69.20200091
    [8] 李高华, 王福新. 高雷诺数双螺旋涡尾迹演化特性分析.  , 2018, 67(5): 054701. doi: 10.7498/aps.67.20171291
    [9] 马续波, 刘佳艺, 徐佳意, 鲁凡, 陈义学. 相关变量随机数序列产生方法.  , 2017, 66(16): 160201. doi: 10.7498/aps.66.160201
    [10] 周双, 冯勇, 吴文渊. 一种识别关联维数无标度区间的新方法.  , 2015, 64(13): 130504. doi: 10.7498/aps.64.130504
    [11] 李志辉, 彭傲平, 方方, 李四新, 张顺玉. 跨流域高超声速绕流环境Boltzmann模型方程统一算法研究.  , 2015, 64(22): 224703. doi: 10.7498/aps.64.224703
    [12] 陈耀慧, 董祥瑞, 陈志华, 张辉, 栗保明, 范宝春. 翼型绕流的洛伦兹力控制机理.  , 2014, 63(3): 034701. doi: 10.7498/aps.63.034701
    [13] 欧阳博, 金心宇, 夏永祥, 蒋路茸, 吴端坡. 疾病传播与级联失效相互作用的研究:度不相关网络中疾病扩散条件的分析.  , 2014, 63(21): 218902. doi: 10.7498/aps.63.218902
    [14] 尹纪富, 尤云祥, 李巍, 胡天群. 电磁力控制湍流边界层分离圆柱绕流场特性数值分析.  , 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [15] 戈阳祯, 米建春. 雷诺数对圆柱尾流中被动标量场的影响.  , 2013, 62(2): 024704. doi: 10.7498/aps.62.024704
    [16] 杜诚, 徐敏义, 米建春. 雷诺数对圆形渐缩喷嘴湍流射流的影响.  , 2010, 59(9): 6331-6338. doi: 10.7498/aps.59.6331
    [17] 米建春, 冯宝平, Deo Ravinesh C, Nathan Graham J. 出口雷诺数对平面射流自保持性的影响.  , 2009, 58(11): 7756-7764. doi: 10.7498/aps.58.7756
    [18] 何 亮, 杜 磊, 庄奕琪, 陈春霞, 卫 涛, 黄小君. 金属互连电迁移噪声的相关维数研究.  , 2007, 56(12): 7176-7182. doi: 10.7498/aps.56.7176
    [19] 吕晓阳, 李华兵. 用格子Boltzmann方法模拟高雷诺数下的热空腔黏性流.  , 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
    [20] 严济慈, 方声恒. 空心水晶圆柱之绕周振动.  , 1936, 2(2): 145-153. doi: 10.7498/aps.2.145
计量
  • 文章访问数:  7856
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-20
  • 修回日期:  2016-06-29
  • 刊出日期:  2016-11-05

/

返回文章
返回
Baidu
map