-
This study systematically investigates the statistics of the centreline small-scale turbulence of a circular jet issuing from a smooth contraction nozzle. Detailed velocity measurements were performed for the exit Reynolds number of Re=20100, where Re≡Ujd /ν with Uj being the exit mean velocity, d the nozzle diameter and ν the kinematic viscosity. After effectively filtering out high frequency noises, statistical properties of the small-scale turbulence were obtained appropriately; those properties include turbulence energy dissipation rate, Kolmogorov length scale, Taylor scale, turbulence Reynolds number, skewness and flatness of the velocity derivative. It is observed that these properties satisfy their self-preserving relations in the far field. It is also revealed that the small-scale turbulence reaches the self-preserving state earlier than does the large-scale motion. Besides, the smallest-scale turbulence depends least on the initial and boundary conditions and therefore behaves most universally across different flows.
-
Keywords:
- hot-wire anemometer /
- circular jet /
- dissipation rate /
- small-scale turbulence
[1] Du C, Xu M, Mi J 2010 Acta Phys. Sin. 59 6323(in Chinese) [杜 诚、 徐敏义、 米建春 2010 59 6323]
[2] Antonia R A, Satyaprakash B R, Hussain A 1980 Phys. Fluids 23 695
[3] Dimotakis P E 2000 J. Fluid Mech. 409 69
[4] Pope S 2000 Turbulent flows (Cambridge: Cambridge Univ. Press) p101
[5] Friehe C, Van Atta C, Gibson C 1971 AGARD Turbulent Shear Flows CP -93 18.1
[6] Hussein H, Capp S, George W 1994 J. Fluid Mech. 258 31
[7] Wygnanski I, Fiedler H 1969 J. Fluid Mech. 38 577
[8] Antonia R A, Satyaprakash B, Hussain A 1982 J. Fluid Mech. 119 55
[9] Mi J, Deo R C, Nathan G J 2005 Phys. Rev. E 71 066304
[10] Mi J, Feng B 2010 Acta Phys. Sin. 59 4748(in Chinese) [米建春、 冯宝平 2010 59 4748]
[11] Hinze J O 1975 Turbulence: an Introduction to its Mechanism and Theory (New York:McGraw-Hill) p13
[12] Kolmogorov A N 1941 Dokl. Akad. Nauk SSSR 30 301
[13] Champagne F 1978 J. Fluid Mech. 86 67
[14] Meng Q, Cai Q, Li C 2004 Acta Phys. Sin. 53 3090 (in Chinese) [孟庆国、 蔡庆东、 李存标 2004 53 3090]
[15] Todde V, Spazzini P, Sandberg M 2009 Expt. Fluids 47 279
[16] Van Atta C, Chen W 1970 J. Fluid Mech. 44 145
[17] Sreenivasan K R, Antonia R A 1997 Annu. Rev. Fluid Mech. 29 435
[18] Su L, Clemens N K 2003 J. Fluid Mech. 488 1
[19] Mazellier N, Vassilicos J C 2008 Phys. Fluids 20 015101
-
[1] Du C, Xu M, Mi J 2010 Acta Phys. Sin. 59 6323(in Chinese) [杜 诚、 徐敏义、 米建春 2010 59 6323]
[2] Antonia R A, Satyaprakash B R, Hussain A 1980 Phys. Fluids 23 695
[3] Dimotakis P E 2000 J. Fluid Mech. 409 69
[4] Pope S 2000 Turbulent flows (Cambridge: Cambridge Univ. Press) p101
[5] Friehe C, Van Atta C, Gibson C 1971 AGARD Turbulent Shear Flows CP -93 18.1
[6] Hussein H, Capp S, George W 1994 J. Fluid Mech. 258 31
[7] Wygnanski I, Fiedler H 1969 J. Fluid Mech. 38 577
[8] Antonia R A, Satyaprakash B, Hussain A 1982 J. Fluid Mech. 119 55
[9] Mi J, Deo R C, Nathan G J 2005 Phys. Rev. E 71 066304
[10] Mi J, Feng B 2010 Acta Phys. Sin. 59 4748(in Chinese) [米建春、 冯宝平 2010 59 4748]
[11] Hinze J O 1975 Turbulence: an Introduction to its Mechanism and Theory (New York:McGraw-Hill) p13
[12] Kolmogorov A N 1941 Dokl. Akad. Nauk SSSR 30 301
[13] Champagne F 1978 J. Fluid Mech. 86 67
[14] Meng Q, Cai Q, Li C 2004 Acta Phys. Sin. 53 3090 (in Chinese) [孟庆国、 蔡庆东、 李存标 2004 53 3090]
[15] Todde V, Spazzini P, Sandberg M 2009 Expt. Fluids 47 279
[16] Van Atta C, Chen W 1970 J. Fluid Mech. 44 145
[17] Sreenivasan K R, Antonia R A 1997 Annu. Rev. Fluid Mech. 29 435
[18] Su L, Clemens N K 2003 J. Fluid Mech. 488 1
[19] Mazellier N, Vassilicos J C 2008 Phys. Fluids 20 015101
Catalog
Metrics
- Abstract views: 8145
- PDF Downloads: 707
- Cited By: 0