-
In experimental setups of continuous-variable quantum key distribution (CVQKD) independently modulating the amplitude and phase of coherent states, the ideal Gaussian modulation will be degraded into discretized polar modulation (DPM) due to the finite resolution of the driving voltages of electro-optical modulators. To compensate for the performance degradation induced by the joint effect of amplitude and phase discretization, linear optics cloning machine (LOCM) can be introduced at the receiver side to reduce the impact of channel excess noise. Implemented by linear optical elements, homodyne detection and controlled displacement, LOCM introduces extra noise that can be transformed into an advantageous one to combat channel excess noise by dynamically adjusting the relevant parameters into a suitable range. In this paper, the prepare-and-measure version of LOCM DPM-CVQKD is presented, where the incoming signal state enters a tunable LOCM before being measured by the nonideal heterodyne detector. The equivalent entanglement-based model is also established to perform security analysis, where the LOCM is reformulated into combining the incoming signal state and a thermal state on a beam splitter. The composable secret key rate is derived to investigate the security of LOCM DPM-CVQKD. Simulation results demonstrate that the secret key rate is closely related to the tuning gain and the transmittance of LOCM. Once the two parameters are set to appropriate values, LOCM allows the promotion of the secret key rate of DPM-CVQKD, as well as its resistance to excess noise. Meanwhile, taking finite-size effect into consideration, LOCM can also effectively reduce the requirement for the block size of the exchanged signals, which is beneficial to the feasibility and practicability of CVQKD. Since the performance of LOCM DPM-CVQKD is heavily reliant on the calibrate selection of relevant parameters, further research may concentrate on the optimization of LOCM in experimental implementations, where machine learning related methods may be exploited.
-
Keywords:
- Quantum key distribution /
- Continuous variable /
- Discretized polar modulation /
- Linear optics cloning machine
-
[1] Portmann C, Renner R 2022Rev. Mod. Phys. 94 025008
[2] Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020Adv. Opt. Photonics 12 1012
[3] Zhang C X, Wu D, Cui P W, Ma J C, Wang Y, An J M 2023 Chinese Phys. B 32 124207
[4] Zapatero V, Navarrete A, Curty, M 2024Adv. Quantum Technol 202300380
[5] Diamanti E, Leverrier A 2015Entropy 17 6072
[6] Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hubel H 2018Adv. Quantum Technol. 1 1800011
[7] Guo H, Li Z, Yu S, Zhang Y C 2021Fundam. Res. 1 96
[8] Zhang Y C, Bian Y M, Li Z Y, Yu S 2024Appl. Phys. Rev.11 011318
[9] Leverrier A 2015Phys. Rev. Lett. 114 070501
[10] Leverrier A 2017Phys. Rev. Lett. 118 200501
[11] Zhang Y C, Li Z Y, Chen Z Y, Weedbrook C; Zhao Y J, Wang X Y, Huang Y D, Xu C C, Zhang X X, Wang Z Y, Li M, Zhang X Y, Zheng Z Y, Chu B J, Gao X Y, Meng N, Cai W W, Wang Z, Wang G, Yu S, Guo H 2019Quantum Sci. Technol. 4 035006
[12] Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S, Guo H 2020Phys. Rev. Lett. 125 010502
[13] Jain N, Chin H M, Mani H, Lupo C, Nikolic D S, Kordts A, Pirandola S, Pedersen T B, Kolb M, Omer B, Pacher C, Gehring T, Andersen U L 2022Nat. Commun. 13 4740
[14] Hajomer A A E, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024Sci. Adv.10 eadi9474
[15] Wang T, Huang P, Li L, Zhou Y M, Zeng G H 2024New J. Phys. 26 023002
[16] Liao Q, Liu H J, Wang Z, Zhu L J 2023Acta Phys. Sin. 72 040301(in Chinese) [廖骎,柳海杰,王铮,朱凌瑾2023 72 040301]
[17] Chen Z Y, Wang X Y, Yu S, Li Z Y, Guo H 2023npj Quantum Inf. 9 28
[18] Zheng Y, Wang Y L, Fang C L, Shi H B, Pan W 2024Phys. Rev. A 109 022424
[19] Zhang G W, Bai J D, Jie Q, Jin J J, Zhang Y M, Liu W Y 2024Acta Phys. Sin. 73 060301(in Chinese) [张光伟,白建东,颉琦,靳晶晶,张永梅,刘文元2024 73 060301]
[20] Jouguet P, Kunz-Jacques S, Diamanti E, Leverrier A 2012Phys. Rev. A 86032309
[21] Wu X D, Huang D, Huang P, Guo Y, 2022Acta Phys. Sin. 71 240304(in Chinese) [吴晓东,黄端,黄鹏,郭迎2022 71 240304.]
[22] Zhang Y J, Wang X Y, Zhang Y, Wang N, Jia Y X, Shi Y Q, Lu Z G, Zou J, Li Y M 2024Acta Phys. Sin. 73 060302(in Chinese) [张云杰,王旭阳,张瑜,王宁,贾雁翔,史玉琪,卢振国,邹俊,李永民2024 73 060302]
[23] Lupo C 2020Phys. Rev. A102 022623
[24] Wang T Y, Li M, Wang X 2022Opt. Express 30 36122
[25] Wang T Y, Li M, Wang X, Hou L 2023Opt. Express 31 21014
[26] Guo Y, Lv G, Zeng G H 2015Quantum Inf. Process. 14 4323
[27] Wu X D, Liao Q, Huang D, Wu X H, Guo Y 2017Chinese Phys. B 26 110304
[28] Zhang H, Mao Y, Huang D, Guo Y, Wu X D, Zhang L 2018Chinese Phys. B 27 090307
[29] Yang F L, Qiu D W 2020Quantum Inf. Process. 19 99
[30] He Y, Wang T Y 2024Quantum Inf Process. 23 135
[31] Mao Y Y, Wang Y J, Guo Y, Mao Y H, Huang W T 2021Acta Phys. Sin. 70 110302[毛宜钰,王一军,郭迎,毛堉昊,黄文体2021 70 110302]
[32] Wu X D, Huang D 2023Acta Phys. Sin.72 050303(in Chinese) [吴晓东,黄端2023 72 050303]
[33] Stefano P 2021Phys. Rev. Research 3 013279
[34] Pirandola S 2021Phys. Rev. Research 3 043014
[35] Mountogiannakis A G, Papanastasiou P, Pirandola S 2022Phys. Rev. A 106 042606
[36] Liu J Y, Ding H J, Zhang C M, Xie S P, Wang Q 2019Phys. Rev. Applied 12 014059
[37] Liu J Y, Jiang Q Q, Ding H J, Ma X, Sun M S, Xu J X, Zhang C H, Xie S P, Li J, Zeng G H, Zhou X Y, Wang Q 2023Sci. China Inf. Sci. 66 189402
[38] Zhang Z K, Liu W Q, Qi J, He C, Huang P 2023Phys. Rev. A107 062614
[39] Chin H M, Jain N, Zibar D, Andersen U L, Gehring T 2021npj Quantum Inf. 7 20
[40] Xu J X, Ma X, Liu J Y, Zhang C H, Li H W, Zhou X Y, Wang Q 2024Sci. China Inf. Sci. 67 202501
Metrics
- Abstract views: 148
- PDF Downloads: 5
- Cited By: 0