-
动力电池作为新能源汽车的核心动力装置, 其精准建模对于动力电池的运行状态估计、全生命周期故障诊断、多工况安全管控等具有重要意义. 以P2D(pseudo-two-dimensions)模型为代表的电化学模型作为能从微观尺度表征电池内部电化学反应过程的机理模型, 其对于动力电池的老化、生热行为的准确描述是电池单体容量衰减、内阻增大、受热不均以及电池模组性能不一致评价的重要依据. 本文梳理了目前锂离子动力电池电化学建模的最新研究进展, 剖析了电化学模型与等效电路模型、老化模型、热模型的耦合方法及应用现状, 重点针对电化学模型的参数繁多且辨识困难的问题, 对比分析了单粒子模型、带液相单粒子模型、电化学平均值模型、固液相重构模型、一维电化学模型等动力电池电化学模型降阶方法的优势与不足, 指出了电化学模型降阶表征的关键难点, 并对电化学模型降阶重构方法的研究趋势进行了展望, 以期为动力电池电化学模型的降阶重构研究指明方向.As the core power unit of new energy vehicles, the accurate modeling of power batteries is of great significance for evaluating their operating status, diagnosing faults throughout their lifecycle, and ensuring safety control under multiple operating conditions. The electrochemical model represented by the P2D model serves as a mechanistic model that can characterize the internal electrochemical reaction process of batteries on a microscale. Its accurate description of the aging and heating behavior of power batteries is an important basis for evaluating the capacity degradation, increase in internal resistance, uneven heating, and inconsistent performance of battery modules. The paper summarizes the latest advances in electrochemical modeling of lithium-ion power batteries, analyzes the coupling methods and application status of electrochemical models with equivalent circuit models, aging models, and thermal models, and focuses on the problem of numerous parameters and difficult identification of electrochemical models. In this paper, the advantages and disadvantages of the single particle model, single particle model with electrolyte, electrochemical mean model, solid-liquid phase reconstruction model, one-dimensional electrochemical model and other methods are compared with each other and analyzed for reducing the order of power battery electrochemical models, the key difficulties in characterizing electrochemical model order reduction are pointed out, and the research trends of electrochemical model reduction order reconstruction methods are prospected, in order to provide direction for the research on electrochemical model reduction order reconstruction of power batteries.
-
Keywords:
- power battery /
- electrochemical model /
- reduced order reconstruction /
- model coupling
[1] Li C L, Cui N X, Wang C Y, Zhang C H 2021 J. Power Sources 497 229900
Google Scholar
[2] 武龙星, 庞辉, 晋佳敏, 耿院飞, 刘凯 2022 电工技术学报 37 1703
Google Scholar
Wu L X, Pang H, Jin J M, Geng Y F, Liu K 2022 Trans. China Electrotech. Soc. 37 1703
Google Scholar
[3] 方儒卿, 张娜, 李哲 2021 清华大学学报(自然科学版) 61 1055
Google Scholar
Fang R Q, Zhang N, Li Z 2021 J. Tsinghua Univ. (Sci. & Tech. ) 61 1055
Google Scholar
[4] 冯毅 2008 博士学位论文(北京: 中国科学院大学)
Feng Y 2008 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences
[5] Nie P B, Zhang S W, Ran A H, Yang C H, Chen S X, Li Z L, Zhang X, Deng W W, Liu T, Kang F Y 2021 Appl. Therm. Eng. 184 116258
Google Scholar
[6] Mama M, Solai E, Capurso T, Danlos A, Khelladi S 2025 Energy Convers. Manag. 325 119223
Google Scholar
[7] Jian L, Liang H 2023 6th International Conference on Electronics and Electrical Engineering Technology Nanjing, China, December 1, 2023 p88
[8] 熊瑞, 马骁, 陈泽宇, 孙逢春 2021 机械工程学报 57 179
Google Scholar
Xiong R, Ma X, Chen Z Y, Sun F C 2021 J. Mech. Eng. 57 179
Google Scholar
[9] 熊瑞, 张凯旋, 李海龙 2024 机械工程学报 61 268
Google Scholar
Xiong R, Zhang K X, Li H L 2024 J. Mech. Eng. 61 268
Google Scholar
[10] 陈少辉, 熊凯 2019 计量与测试技术 46 27
Google Scholar
Chen S H, Xiong K 2019 Metrol. Meas. Tech. 46 27
Google Scholar
[11] Guo Z Q, Xiong Q, Zhang C, Zhu L Y, Ji S C 2021 Power System and Green Energy Conference Shanghai, China, August 20–22, 2021 p660
[12] Atalay S, Sheikh M, Mariani A, Melra Y, Bower E, Widanage W D 2020 J. Power Sources 478 229026
Google Scholar
[13] 张宇飞 2022 硕士学位论文(重庆: 重庆大学)
Zhang Y F 2022 M. S. Thesis (Chongqing: Chongqing University
[14] Petzl M, Danzer M A 2014 J. Power Sources 254 80
Google Scholar
[15] 梁峰伟, 夏煜华, 张玉龙, 赵树朋, 杨世春, 刘新华 2022 稀有金属 46 1235
Google Scholar
Liang W F, Xia Y H, Zhang Y L, Zhao S P, Yang S C, Liu X H 2022 Chin. J. Ra. Met. 46 1235
Google Scholar
[16] 张成 2024 硕士学位论文(西安: 西安工业大学)
Zhang C 2024 M. S. Thesis (Xian: Xian Technological University
[17] 左东旭, 李培超 2024 电化学 30 13
Google Scholar
Zuo D X, Li P C 2024 J. Electrochem. 30 13
Google Scholar
[18] Verma M K S, Basu S, Patil R S, Hariharan K S, Adiga S P, Kolake S M, Oh D, Song T, Sung Y 2020 IEEE Trans. Veh. Technol. 69 2563
Google Scholar
[19] Chen G W, Liu Z T, Su H Y, Zhang Q L 2019 Proceedings of the 38th Chinese Control Conference Guangzhou, Peoples R China, July 27–30, 2019 p697
[20] Nicodemo N, Di Rienzo R, Lagnoni M, Bertei A, Baronti F 2024 J. Energy Storage 99 113257
Google Scholar
[21] Zhang X, Lu J L, Yuan S F, Yang J, Zhou X 2017 J. Power Sources 345 21
Google Scholar
[22] Cai C X, Gong Y, Fotouhi A, Auger D J 2024 J. Energy Storage 99 113142
Google Scholar
[23] Bala S, Popov B N, White R E 1998 J. Power Sources 75 56
Google Scholar
[24] Huang L, Yao C 2016 Chin. J. Chem. Phys. 29 623
Google Scholar
[25] Xu S C, Wang Y H, Shao J Y, Li J F, Yu Q Q 2022 Appl. Therm. Eng. 217 119282
Google Scholar
[26] Liu L H, Zhu J G, Zheng L F 2020 IEEE Access 8 211738
Google Scholar
[27] Gou F, Couto L D, Mulder G, Trad K, Hu G D, Capron O, Haghverdi K 2024 J. Energy Storage 101 113850
Google Scholar
[28] Wang J R, Meng J H, Peng Q, Liu T Q, Peng J C 2024 J. Energy Storage 87 111473
Google Scholar
[29] Sun X D, Xu N X, Chen Q, Yang J F, Zhu J G, Xu J, Zheng L F 2023 IEEE Trans. Transp. Electrif. 9 2453
Google Scholar
[30] 蔡雪, 张彩萍, 张琳静, 张维戈, 高乐 2021 机械工程学报 57 64
Google Scholar
Cai X, Zhang C P, Zhang L J, Zhang W G, Gao L 2021 J. Mech. Eng. 57 64
Google Scholar
[31] 赵冬梅, 裴建楠, 刘崇茹, 徐辰宇, 宋晨铭 2024 中国电机工程学报 44 3916
Google Scholar
Zhao D M, Pei J N, Liu C R, Xu C Y, Song C M 2024 Proc. Chin. Soc. Electr. Eng. 44 3916
Google Scholar
[32] 庞辉 2017 66 238801
Google Scholar
Pang H 2017 Acta Phys. Sin. 66 238801
Google Scholar
[33] Di Domenico D, Stefanopoulou A, Fiengo G 2010 J. Dyn. Syst. Meas. Contr. 132 061302
Google Scholar
[34] Prada E, Di Domenico D, Creff Y, Bernard J, Sauvant Moynot V, Huet F 2012 J. Electrochem. Soc. 159 A1508
Google Scholar
[35] Moura S J, Argomedo F B, Klein R, Mirtabatabaei A, Krstic M 2017 IEEE Trans. Control Syst. Technol. 25 453
Google Scholar
[36] Li W H, Fan Y, Ringbeck F, Jost D, Han X B, Ouyang M G, Sauer D U 2020 J. Power Sources 476 228534
Google Scholar
[37] 任立超 2022 硕士学位论文(武汉: 武汉理工大学)
Ren L C 2022 M. S. Thesis (Wuhan: Wuhan University of Technology
[38] Wang J G, Meng J H, Peng Q, Liu T Q, Zeng X Y, Chen G, Li Y 2023 Batteries 9 180
Google Scholar
[39] Desouza A K, Plett G L, Trimboli M S 2024 American Control Conference Toronto, Canada, July 10-12, 2024 p1449
[40] Zhou J P, Xing B, Wang C Y 2020 International Conference on Energy Environment and Bioengineering Xi’an, China, August 7–9, 2020 p04001
[41] 谢奕展, 程夕明 2022 机械工程学报 58 37
Google Scholar
Xie Y Z, Cheng X M 2022 J. Mech. Eng. 58 37
Google Scholar
[42] Xie Y Z, Wang S H, Wang Z P, Cheng X M 2024 Chin. Phys. B 33 651
Google Scholar
[43] 徐乐, 邓忠伟, 谢翌, 胡晓松 2022 机械工程学报 58 304
Google Scholar
Xu L, Deng Z W, Xie Y, Hu X S 2022 J. Mech. Eng. 58 304
Google Scholar
[44] 谢奕展, 程夕明 2022 71 048201
Google Scholar
Xie Y Z, Cheng X M 2022 Acta Phys. Sin. 71 048201
Google Scholar
[45] Tang X P, Zou C F, Yao K, Lu J Y, Xia Y X, Gao F R 2019 Appl. Energy 254 113591
Google Scholar
[46] Kumar V S 2013 J. Power Sources 222 426
Google Scholar
[47] 应振华 2015 硕士学位论文(长春: 吉林大学)
Ying Z H 2015 M. S. Thesis (Changchun: Jilin University
[48] Wu L X, Liu K, Pang H 2021 Electrochim. Acta 368 137604
Google Scholar
[49] 熊瑞, 李幸港 2025 机械工程学报 1
Xiong R, Li X G 2025 J. Mech. Eng. 1
[50] 王位 2017 硕士学位论文(镇江: 江苏大学)
Wang W 2017 M. S. Thesis (Zhenjiang: Jiangsu University
[51] Subramanian V R, Ritter J A, White R E 2001 J. Electrochem. Soc. 148 E444
Google Scholar
[52] Subramanian V R, Diwakar V D, Tapriyal D 2005 J. Electrochem. Soc. 152 A2002
Google Scholar
[53] Klein R, Chaturvedi N A, Christensen J, Ahmed J, Findeisen R, Kojic A 2013 IEEE Trans. Control Syst. Technol. 21 289
Google Scholar
[54] Rahman M A, Anwar S, Izadian A 2016 J. Power Sources 307 86
Google Scholar
[55] Luo W L, Lyu C, Wang L X, Zhang L Q 2013 Microelectron. Reliab. 53 797
Google Scholar
[56] Han X B, Ouyang M G, Lu L G, Li J Q 2015 J. Power Sources 278 802
Google Scholar
[57] Han X B, Ouyang M G, Lu L G, Li J Q 2015 J. Power Sources 278 814
Google Scholar
[58] Deng Z W, Yang L, Deng H, Cai Y S, Li D D 2018 Energy 142 838
Google Scholar
[59] 李旭昊, 周宇, 王冰川 2020 储能科学与技术 9 1991
Google Scholar
Li X H, Zhou Y, Wang B C 2020 Energy Stor. Sci. Technol. 9 1991
Google Scholar
[60] Wang D F, Huang H Q, Tang Z H, Zhang Q, Yang B W, Zhang B 2020 Electrochim. Acta 362 137118
Google Scholar
[61] Li J F, Wang L X, Lyu C, Liu E H, Xing Y J, Pecht M 2018 Electrochim. Acta 275 50
Google Scholar
[62] Fu Y J, Jun W, Mei W L, Jun F L, Jun Y S 2025 J. Energy Storage 112 115495
Google Scholar
[63] 刘征宇, 杨昆, 魏自红, 姚利阳 2019 68 098801
Google Scholar
Liu Z Y, Yang K, Wei Z H, Yao L Y 2019 Acta Phys. Sin. 68 098801
Google Scholar
[64] Kandler A S, Christopher D R, Wang C Y 2007 Energy Convers. Manag. 48 2565
Google Scholar
[65] 陆浩然, 邹梦珍, 李哲 2024 机械工程学报 60 193
Google Scholar
Lu H R, Zou M Z, Li Z 2024 J. Mechan. Eng. 60 193
Google Scholar
[66] Ma Y, Li X, Li G Y, Hu Y F, Bai Q W 2019 IEEE Acc. 7 156136
Google Scholar
[67] Sangiri J B, Sardar A, Ghosh S, Maiti S, Chakraborty C 2022 Electr. Eng. 104 3733
Google Scholar
[68] 李光远, 马彦 2018 吉林大学学报(信息科学版) 36 260
Google Scholar
Li G Y, Ma Y 2018 J. Jilin Univ. (Inf. Sci. ) 36 260
Google Scholar
[69] 梁新成, 张志冬, 黄国钧 2023 西南大学学报(自然科学版) 45 214
Google Scholar
Liang X C, Zhang Z D, Huang G J 2023 J. Southwest Univ (Nat. Sci. ) 45 214
Google Scholar
[70] 李涛, 程夕明, 胡晨华 2021 70 138801
Google Scholar
Li T, Cheng X M, Hu C H 2021 Acta Phys. Sin. 70 138801
Google Scholar
[71] Kong X R, Wetton B, Gopaluni B 2019 12th International-Federation-of-Automatic-Control Symposium on Dynamics and Control of Process Systems including Biosystems Florianopolis, Brazil, April 23–26, 2019 p946
[72] 李皓天, 张玉龙, 赵树朋, 高山汀, 周玉宏, 刘江铎, 刘志豪 2021 科学技术创新 16 183
Google Scholar
Li H T, Zhang Y L, Zhao S P, Gao S T, Zhou Y H, Liu J D, Liu Z H 2021 Sci. Technol. Innov. 16 183
Google Scholar
[73] Xu L, Lin X, Xie Y, Hu X S 2022 Energy Storage Mater. 45 952
[74] 张毕 2022 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Zhang B 2022 M. S. Thesis (Harbin: Harbin Institute of Technology
-
表 1 P2D模型控制方程及边界条件
Table 1. P2D model control equations and boundary conditions.
状态 控制方程 边界条件 固相锂离子浓度 $ \dfrac{{\partial {c_{\text{s}}}}}{{\partial t}} = \dfrac{1}{{{r^2}}}\dfrac{\partial }{{\partial r}}\left( {{r^2}{D_{\text{s}}}\dfrac{{\partial {c_{\text{s}}}}}{{\partial r}}} \right) $ $ {D_{\text{s}}}\dfrac{{\partial {c_{\text{s}}}}}{{\partial r}}{\Big|_{r = 0}} = 0,\;\; {D_{\text{s}}}\dfrac{{\partial {c_{\text{s}}}}}{{\partial r}}{\Big|_{r = {R_{\text{s}}}}} = - \dfrac{j}{F} $ 液相锂离子浓度 $ \varepsilon \dfrac{{\partial {c_{\text{l}}}}}{{\partial t}} = \dfrac{\partial }{{\partial x}}\left( {{D_{\text{l}}}\dfrac{{\partial {c_{\text{l}}}}}{{\partial x}}} \right) + \left( {1 - {t^ + }} \right)\dfrac{{\nabla {i_{\text{l}}}}}{F} $ $ {D_{\text{l}}}\dfrac{{\partial {c_{\text{l}}}}}{{\partial x}}{\Big|_{x = 0}} = {D_{\text{l}}}\dfrac{{\partial {c_{\text{l}}}}}{{\partial x}}{\Big|_{x = L}} = 0 $ 固相电势 $ {i_{\text{s}}} + {\sigma _{\text{s}}}\nabla {\phi _{\text{s}}} = 0 $ $ {i_{\text{s}}}{|_{x = 0}} = {i_{\text{s}}}{|_{x = L}} = I $ 液相电势 $ {i_{\text{l}}} = - {\sigma _{\text{l}}}\nabla {\phi _{\text{l}}} + \dfrac{{2 RT{\sigma _{\text{l}}}}}{F}\left( {1 + \dfrac{{\partial \ln f}}{{\partial \ln {c_{\text{l}}}}}} \right)\left( {1 - {t^ + }} \right)\nabla \ln {c_{\text{l}}} $ $ {\sigma _{\text{l}}}\dfrac{{\partial {\phi _{\text{l}}}}}{{\partial x}}{\Big|_{x = 0}} = {\sigma _{\text{l}}}\dfrac{{\partial {\phi _{\text{l}}}}}{{\partial x}}{\Big|_{x = L}} = 0 $ 表 2 电化学模型降阶重构方法对比
Table 2. Comparison of simplified methods for electrochemical models.
模型
名称降阶电化学模型图 降阶条件 优势 不足 适用电池 相关文献 P2D
模型见附录B
图B1常使用的电化学模型, 在该模型基础上降阶电化学模型 模型精确度高 参数辨识困难, 计算复杂, 适用性差 具有很强的通用性, 基本适用于所有锂离子电池 [9,13,
15,20]SPM
模型见附录B
图B2假设 1: 固相锂离子浓度沿电极厚度方向上均匀分布;
假设 2: 交换电流密度i0(x, t)用其均值代替;
假设 3: 固-液相界面的反应电流密度 j(x, t)沿电极厚度方向均匀分布;
假设 4: 电池内部液相浓度和电势均为不随时间改变的定值模型求解简单, 在低倍率情况下效果较好 高倍率和动态工况下误差会变大 低极化特性的正极材料(LiFePO4)/石墨体系的锂离子电池 [30,31] SPMe
模型见附录B
图B3假设 1: 固相锂离子浓度沿电极厚度方向上均匀分布;
假设 2: 交换电流密度i0(x, t)用其均值代替;
假设 3: 固-液相界面的反应电流密度 j(x, t)沿电极厚度方向均匀分布模型精度较SPM模型而言更高 电流变化剧烈的动态工况下, 误差会大 三元锂离子电池、磷酸铁锂离子电池等液态电解质锂离子电池 [41,43,44] 电化学
平均值
模型见附录B
图B4(a)假设 1: 电解液中锂离子浓度恒定不变;
假设 2: 在正、负电极中, 分别用锂离子反应电流密度的平均值取代锂离子反应电流密度沿电极厚度方向的值计算简单, 低倍率下精度高 无法精确描述电池在高倍率充放电和变电流密度等动态工况下的变化, 会使模型精度下降 正极为LiCoO2, 负极为MCMB2528电解质溶质为LiPF6, 溶剂为EC和DEC混合物的锂离子电池 [47] 见附录B
图B4(b)假设 1: 反应电流密度用均值代替;
假设 2: 正极固相扩散过程用2阶抛物线近似, 负极固相扩散过程用3阶Padé近似;
假设3: 液相扩散过程用体积平均法近似精度随着Padé近似的阶数增长 近似阶数增大, 其所需的变量也会相应增加, 计算难度增大 正负极为LiyMn2O4/LixC6的锂离子电池单元 [46,48] LSP2D
模型见附录B
图B5(a)假设 1: 用反应电流密度的平均值取代锂离子反应电流密度沿电极厚度方向的值;
假设 2: 用2参数抛物线近似描述固相扩散过程;
假设 3: 用3参数抛物线近似描述液相扩散过程降阶重构了参数间的耦合关系, 精度较SPM而言更高 当外界工作条件变化剧烈时, 实际的固液相锂离子浓度变化偏离抛物线变化情况严重, 精度会下降 磷酸铁锂离子电池 [63] 见附录B
图B5(b)假设 1: 液相锂离子浓度恒定;
假设 2: 固相扩散过程用3参数近似模型该模型简单的运算使得参数辨识更加容易 液相变化精度不足 18650三元锂
离子电池[53,54] 见附录B
图B5(c)假设 1: 忽略电极内部反应不均匀分布效应, 反应电流密度用工作电流密度近似;
假设 2: 电极用单个颗粒近似, 固相浓度分布服从三参数抛物线分布, 液相浓度分布服从二参数抛物线近似;
假设 3: 两电极反应极化程度相同, 固相扩散过程相同;
假设 4: 电池内部温度对模型参数的影响忽略不计整体精度表现较好, 还可以建立电池内部与外电路电流密度的关系 仅在截止电压部分有较大误差 正极为LiCoO2负极为石墨的锂离子电池 [61,62] 一维
模型见附录B
图B6假设 1: 参数恒定;
假设 2: 固相液相交界面处的锂离子反应电流密度j与液相锂离子浓度cl解耦, 并认为 cl 恒定维度更低涉及的状态量更少, 模型求解更简单 对于高放电电流密度或快速充放电等复杂工况, 一维模型无法准确反应电池内部动态相应, 精度下降 正极为LiCoO2, 负极为MCMB2528的锂离子电池 [68] 表 3 部分关键电化学参数的辨识方法
Table 3. Calculation methods for some key electrochemical parameters.
参数类型 参数名称 测试方法 测试设备 测算方法 动力学参数 固相扩散系数 恒流间歇滴定 充放电测试仪 测得 液相扩散系数 恒流间歇滴定 充放电测试仪 计算 液相电导率 四电极测量 电导率仪 测得 固相电导率 恒流间歇滴定 充放电测试仪 计算 反应速率常数 阻抗谱测试 电化学工作站 测得 反应电流密度 扫描伏安法 电化学工作站 计算 交换电流密度 扫描伏安法 电化学工作站 计算 固相电流密度 扫描伏安法 电化学工作站 计算 液相电流密度 扫描伏安法 电化学工作站 计算 浓度场参数 固相浓度 恒流间歇滴定 充放电测试仪 计算 固相表面浓度 恒流间歇滴定 充放电测试仪 计算 液相浓度 扫描伏安法 电化学工作站 计算 液相体积分数 NMR测试法 NMR波谱仪 计算 电相关参数 过电势 差值法 电化学工作站 计算 液相电势 微电极技术测量 电化学工作站 计算 固相电势 三电极体系法 电化学工作站 测得 开路电压 电压表直接测量法 电压表 测得 表 A1 不同模型的参数及其物理含义和来源
Table A1. Parameters of different models and their physical meanings and sources.
模型名称 参数 物理含义 来源 对模型准确性影响 SPM+SPMe 平均固相锂离子浓度 用平均值描述整体的固相锂离子浓度, 忽略了固相在不同电极位置处的浓度差异. [33]
[34,43]在高倍率下忽略固相锂离子浓度的动态变化会进一步造成过电位的偏差. 平均交换电流密度 用平均值描述整体的交换电流密度, 忽略了其在不同电极位置处的差异性. 在高倍率下实际交换电流密度严重偏离平均值, 导致极化电压预测偏差. SPM+SPMe+电化学平均值模型 平均反应电流密度 用平均值描述整体的反应电流密度, 忽略了其在不同电极位置处的差异性. [43,33]
[34,47]在高倍率情况下会导致局部过电位的变化被忽略, 进而影响模型输出电压. SPM+电化学平均值模型 平均液相锂离子浓度 用平均值描述整体的液相锂离子浓度, 忽略了其动态变化. [43,47] 在高倍率情况下, 电解液浓度梯度变化显著, 平均化会低估浓差极化, 进而影响输出电压. LSP2D 体积平均浓度 描述固相锂离子浓度的体积平均值, 体现在微观颗粒层面. [51,52] 直接影响模型在稳态下的容量预测, 会导致SOC估计偏差. 表面浓度 描述固相颗粒表面的锂离子浓度. 会影响交换电流密度和极化电压的计算进而影响输出端电压. 体积平均浓度通量 描述固相锂离子浓度相对于系统中位置的平均变化. 和浓度梯度密切相关, 会导致扩散极化现象的预测偏差. -
[1] Li C L, Cui N X, Wang C Y, Zhang C H 2021 J. Power Sources 497 229900
Google Scholar
[2] 武龙星, 庞辉, 晋佳敏, 耿院飞, 刘凯 2022 电工技术学报 37 1703
Google Scholar
Wu L X, Pang H, Jin J M, Geng Y F, Liu K 2022 Trans. China Electrotech. Soc. 37 1703
Google Scholar
[3] 方儒卿, 张娜, 李哲 2021 清华大学学报(自然科学版) 61 1055
Google Scholar
Fang R Q, Zhang N, Li Z 2021 J. Tsinghua Univ. (Sci. & Tech. ) 61 1055
Google Scholar
[4] 冯毅 2008 博士学位论文(北京: 中国科学院大学)
Feng Y 2008 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences
[5] Nie P B, Zhang S W, Ran A H, Yang C H, Chen S X, Li Z L, Zhang X, Deng W W, Liu T, Kang F Y 2021 Appl. Therm. Eng. 184 116258
Google Scholar
[6] Mama M, Solai E, Capurso T, Danlos A, Khelladi S 2025 Energy Convers. Manag. 325 119223
Google Scholar
[7] Jian L, Liang H 2023 6th International Conference on Electronics and Electrical Engineering Technology Nanjing, China, December 1, 2023 p88
[8] 熊瑞, 马骁, 陈泽宇, 孙逢春 2021 机械工程学报 57 179
Google Scholar
Xiong R, Ma X, Chen Z Y, Sun F C 2021 J. Mech. Eng. 57 179
Google Scholar
[9] 熊瑞, 张凯旋, 李海龙 2024 机械工程学报 61 268
Google Scholar
Xiong R, Zhang K X, Li H L 2024 J. Mech. Eng. 61 268
Google Scholar
[10] 陈少辉, 熊凯 2019 计量与测试技术 46 27
Google Scholar
Chen S H, Xiong K 2019 Metrol. Meas. Tech. 46 27
Google Scholar
[11] Guo Z Q, Xiong Q, Zhang C, Zhu L Y, Ji S C 2021 Power System and Green Energy Conference Shanghai, China, August 20–22, 2021 p660
[12] Atalay S, Sheikh M, Mariani A, Melra Y, Bower E, Widanage W D 2020 J. Power Sources 478 229026
Google Scholar
[13] 张宇飞 2022 硕士学位论文(重庆: 重庆大学)
Zhang Y F 2022 M. S. Thesis (Chongqing: Chongqing University
[14] Petzl M, Danzer M A 2014 J. Power Sources 254 80
Google Scholar
[15] 梁峰伟, 夏煜华, 张玉龙, 赵树朋, 杨世春, 刘新华 2022 稀有金属 46 1235
Google Scholar
Liang W F, Xia Y H, Zhang Y L, Zhao S P, Yang S C, Liu X H 2022 Chin. J. Ra. Met. 46 1235
Google Scholar
[16] 张成 2024 硕士学位论文(西安: 西安工业大学)
Zhang C 2024 M. S. Thesis (Xian: Xian Technological University
[17] 左东旭, 李培超 2024 电化学 30 13
Google Scholar
Zuo D X, Li P C 2024 J. Electrochem. 30 13
Google Scholar
[18] Verma M K S, Basu S, Patil R S, Hariharan K S, Adiga S P, Kolake S M, Oh D, Song T, Sung Y 2020 IEEE Trans. Veh. Technol. 69 2563
Google Scholar
[19] Chen G W, Liu Z T, Su H Y, Zhang Q L 2019 Proceedings of the 38th Chinese Control Conference Guangzhou, Peoples R China, July 27–30, 2019 p697
[20] Nicodemo N, Di Rienzo R, Lagnoni M, Bertei A, Baronti F 2024 J. Energy Storage 99 113257
Google Scholar
[21] Zhang X, Lu J L, Yuan S F, Yang J, Zhou X 2017 J. Power Sources 345 21
Google Scholar
[22] Cai C X, Gong Y, Fotouhi A, Auger D J 2024 J. Energy Storage 99 113142
Google Scholar
[23] Bala S, Popov B N, White R E 1998 J. Power Sources 75 56
Google Scholar
[24] Huang L, Yao C 2016 Chin. J. Chem. Phys. 29 623
Google Scholar
[25] Xu S C, Wang Y H, Shao J Y, Li J F, Yu Q Q 2022 Appl. Therm. Eng. 217 119282
Google Scholar
[26] Liu L H, Zhu J G, Zheng L F 2020 IEEE Access 8 211738
Google Scholar
[27] Gou F, Couto L D, Mulder G, Trad K, Hu G D, Capron O, Haghverdi K 2024 J. Energy Storage 101 113850
Google Scholar
[28] Wang J R, Meng J H, Peng Q, Liu T Q, Peng J C 2024 J. Energy Storage 87 111473
Google Scholar
[29] Sun X D, Xu N X, Chen Q, Yang J F, Zhu J G, Xu J, Zheng L F 2023 IEEE Trans. Transp. Electrif. 9 2453
Google Scholar
[30] 蔡雪, 张彩萍, 张琳静, 张维戈, 高乐 2021 机械工程学报 57 64
Google Scholar
Cai X, Zhang C P, Zhang L J, Zhang W G, Gao L 2021 J. Mech. Eng. 57 64
Google Scholar
[31] 赵冬梅, 裴建楠, 刘崇茹, 徐辰宇, 宋晨铭 2024 中国电机工程学报 44 3916
Google Scholar
Zhao D M, Pei J N, Liu C R, Xu C Y, Song C M 2024 Proc. Chin. Soc. Electr. Eng. 44 3916
Google Scholar
[32] 庞辉 2017 66 238801
Google Scholar
Pang H 2017 Acta Phys. Sin. 66 238801
Google Scholar
[33] Di Domenico D, Stefanopoulou A, Fiengo G 2010 J. Dyn. Syst. Meas. Contr. 132 061302
Google Scholar
[34] Prada E, Di Domenico D, Creff Y, Bernard J, Sauvant Moynot V, Huet F 2012 J. Electrochem. Soc. 159 A1508
Google Scholar
[35] Moura S J, Argomedo F B, Klein R, Mirtabatabaei A, Krstic M 2017 IEEE Trans. Control Syst. Technol. 25 453
Google Scholar
[36] Li W H, Fan Y, Ringbeck F, Jost D, Han X B, Ouyang M G, Sauer D U 2020 J. Power Sources 476 228534
Google Scholar
[37] 任立超 2022 硕士学位论文(武汉: 武汉理工大学)
Ren L C 2022 M. S. Thesis (Wuhan: Wuhan University of Technology
[38] Wang J G, Meng J H, Peng Q, Liu T Q, Zeng X Y, Chen G, Li Y 2023 Batteries 9 180
Google Scholar
[39] Desouza A K, Plett G L, Trimboli M S 2024 American Control Conference Toronto, Canada, July 10-12, 2024 p1449
[40] Zhou J P, Xing B, Wang C Y 2020 International Conference on Energy Environment and Bioengineering Xi’an, China, August 7–9, 2020 p04001
[41] 谢奕展, 程夕明 2022 机械工程学报 58 37
Google Scholar
Xie Y Z, Cheng X M 2022 J. Mech. Eng. 58 37
Google Scholar
[42] Xie Y Z, Wang S H, Wang Z P, Cheng X M 2024 Chin. Phys. B 33 651
Google Scholar
[43] 徐乐, 邓忠伟, 谢翌, 胡晓松 2022 机械工程学报 58 304
Google Scholar
Xu L, Deng Z W, Xie Y, Hu X S 2022 J. Mech. Eng. 58 304
Google Scholar
[44] 谢奕展, 程夕明 2022 71 048201
Google Scholar
Xie Y Z, Cheng X M 2022 Acta Phys. Sin. 71 048201
Google Scholar
[45] Tang X P, Zou C F, Yao K, Lu J Y, Xia Y X, Gao F R 2019 Appl. Energy 254 113591
Google Scholar
[46] Kumar V S 2013 J. Power Sources 222 426
Google Scholar
[47] 应振华 2015 硕士学位论文(长春: 吉林大学)
Ying Z H 2015 M. S. Thesis (Changchun: Jilin University
[48] Wu L X, Liu K, Pang H 2021 Electrochim. Acta 368 137604
Google Scholar
[49] 熊瑞, 李幸港 2025 机械工程学报 1
Xiong R, Li X G 2025 J. Mech. Eng. 1
[50] 王位 2017 硕士学位论文(镇江: 江苏大学)
Wang W 2017 M. S. Thesis (Zhenjiang: Jiangsu University
[51] Subramanian V R, Ritter J A, White R E 2001 J. Electrochem. Soc. 148 E444
Google Scholar
[52] Subramanian V R, Diwakar V D, Tapriyal D 2005 J. Electrochem. Soc. 152 A2002
Google Scholar
[53] Klein R, Chaturvedi N A, Christensen J, Ahmed J, Findeisen R, Kojic A 2013 IEEE Trans. Control Syst. Technol. 21 289
Google Scholar
[54] Rahman M A, Anwar S, Izadian A 2016 J. Power Sources 307 86
Google Scholar
[55] Luo W L, Lyu C, Wang L X, Zhang L Q 2013 Microelectron. Reliab. 53 797
Google Scholar
[56] Han X B, Ouyang M G, Lu L G, Li J Q 2015 J. Power Sources 278 802
Google Scholar
[57] Han X B, Ouyang M G, Lu L G, Li J Q 2015 J. Power Sources 278 814
Google Scholar
[58] Deng Z W, Yang L, Deng H, Cai Y S, Li D D 2018 Energy 142 838
Google Scholar
[59] 李旭昊, 周宇, 王冰川 2020 储能科学与技术 9 1991
Google Scholar
Li X H, Zhou Y, Wang B C 2020 Energy Stor. Sci. Technol. 9 1991
Google Scholar
[60] Wang D F, Huang H Q, Tang Z H, Zhang Q, Yang B W, Zhang B 2020 Electrochim. Acta 362 137118
Google Scholar
[61] Li J F, Wang L X, Lyu C, Liu E H, Xing Y J, Pecht M 2018 Electrochim. Acta 275 50
Google Scholar
[62] Fu Y J, Jun W, Mei W L, Jun F L, Jun Y S 2025 J. Energy Storage 112 115495
Google Scholar
[63] 刘征宇, 杨昆, 魏自红, 姚利阳 2019 68 098801
Google Scholar
Liu Z Y, Yang K, Wei Z H, Yao L Y 2019 Acta Phys. Sin. 68 098801
Google Scholar
[64] Kandler A S, Christopher D R, Wang C Y 2007 Energy Convers. Manag. 48 2565
Google Scholar
[65] 陆浩然, 邹梦珍, 李哲 2024 机械工程学报 60 193
Google Scholar
Lu H R, Zou M Z, Li Z 2024 J. Mechan. Eng. 60 193
Google Scholar
[66] Ma Y, Li X, Li G Y, Hu Y F, Bai Q W 2019 IEEE Acc. 7 156136
Google Scholar
[67] Sangiri J B, Sardar A, Ghosh S, Maiti S, Chakraborty C 2022 Electr. Eng. 104 3733
Google Scholar
[68] 李光远, 马彦 2018 吉林大学学报(信息科学版) 36 260
Google Scholar
Li G Y, Ma Y 2018 J. Jilin Univ. (Inf. Sci. ) 36 260
Google Scholar
[69] 梁新成, 张志冬, 黄国钧 2023 西南大学学报(自然科学版) 45 214
Google Scholar
Liang X C, Zhang Z D, Huang G J 2023 J. Southwest Univ (Nat. Sci. ) 45 214
Google Scholar
[70] 李涛, 程夕明, 胡晨华 2021 70 138801
Google Scholar
Li T, Cheng X M, Hu C H 2021 Acta Phys. Sin. 70 138801
Google Scholar
[71] Kong X R, Wetton B, Gopaluni B 2019 12th International-Federation-of-Automatic-Control Symposium on Dynamics and Control of Process Systems including Biosystems Florianopolis, Brazil, April 23–26, 2019 p946
[72] 李皓天, 张玉龙, 赵树朋, 高山汀, 周玉宏, 刘江铎, 刘志豪 2021 科学技术创新 16 183
Google Scholar
Li H T, Zhang Y L, Zhao S P, Gao S T, Zhou Y H, Liu J D, Liu Z H 2021 Sci. Technol. Innov. 16 183
Google Scholar
[73] Xu L, Lin X, Xie Y, Hu X S 2022 Energy Storage Mater. 45 952
[74] 张毕 2022 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Zhang B 2022 M. S. Thesis (Harbin: Harbin Institute of Technology
计量
- 文章访问数: 306
- PDF下载量: 10
- 被引次数: 0