搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ADME模型的锂离子动力电池外特性研究

李晓杰 喻云泰 张志文 董小瑞

引用本文:
Citation:

基于ADME模型的锂离子动力电池外特性研究

李晓杰, 喻云泰, 张志文, 董小瑞

Study on External Characteristics of Lithium Ion Power Battery Based on ADME Model

PDF
HTML
导出引用
  • 当前锂离子动力电池电化学模型存在模型复杂、建模难度大、计算效率低、老化评估效果差的问题,本文提出一种考虑电池衰退老化的机理模型(ADME)。本文首先通过有限差分法对伪二维(P2D)电化学模型进行离散降阶处理,得到简化伪二维(SP2D)模型。在SP2D模型的基础上,基于正负两极发生的副反应导致的衰退老化现象,提出一种考虑电池衰退老化的机理模型(ADME)。其次,使用多变量偏差补偿最小二乘法实现模型参数辨识。最后通过动力电池衰退老化性能循环实验,恒流、脉冲工况实验对比分析了SP2D模型和ADME模型的终端电压输出。结果表明:ADME模型较为简单、计算效率和估算精度高,可以有效评估电池容量老化衰退,得到理想的锂离子动力电池外特性曲线。
    The current electrochemical model of lithium-ion power battery has the problems of complex model, difficult modeling, low calculation efficiency, and poor aging evaluation effect. This paper proposes a mechanism model (ADME) that considers battery degradation and aging. In this paper, the pseudo two-dimensional (P2D) electrochemical model is discretely reduced by the finite difference method to obtain a simplified pseudo two-dimensional (SP2D) model. On the basis of the SP2D model, based on the degradation and aging phenomenon caused by the side reactions of the positive and negative poles, a mechanism model (ADME) that considers the degradation and aging of the battery is proposed. Secondly, the multivariate deviation compensation least square method is used to realize the model parameter identification. Finally, the terminal voltage output of the SP2D model and the ADME model are compared and analyzed through the cyclical experiment of power battery degradation and aging performance, constant current and pulse operating conditions. The results show that the ADME model is relatively simple, has high calculation efficiency and estimation accuracy, and can effectively evaluate the aging and decline of battery capacity, and obtain an ideal lithium-ion power battery external characteristic curve.
计量
  • 文章访问数:  3144
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-29
  • 上网日期:  2021-10-29

/

返回文章
返回
Baidu
map