搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼掺杂纤维红磷烯的电子结构及其高效光催化析氢性能

卢一林 董盛杰 崔方超 陈东明 毛卓

引用本文:
Citation:

硼掺杂纤维红磷烯的电子结构及其高效光催化析氢性能

卢一林, 董盛杰, 崔方超, 陈东明, 毛卓

Electronic structure and efficient photocatalytic hydrogen evolution performance of boron-doped fibrous red phosphorene

LU Yilin, DONG Shengjie, CUI Fangchao, CHEN Dongming, MAO Zhuo
cstr: 32037.14.aps.74.20250540
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 在能源危机与环境污染的双重挑战下, 光催化分解水制氢技术因其绿色可持续特性成为清洁能源领域的研究热点. 纤维红磷(FRP)作为一种新型准一维半导体材料, 凭借其适中的带隙、高载流子迁移率及优异的空气稳定性, 展现出显著的光催化析氢潜力. 基于第一性原理计算, 本文系统探究了一系列非金属元素X (X = B, C, N, O, Si, S, As和Se)掺杂对单层FRP电子结构及催化性能的调控机制. 结果表明, 杂质X能有效提升单层FRP的析氢反应(HER)活性. 其中, 4种掺杂体系(S掺杂位点1、B掺杂位点1/2/5)表现出优异的HER催化活性. 尤其是B掺杂位点2体系, 具有最理想的氢吸附自由能, 其过电位与贵金属Pt催化剂相当. 电子结构分析发现, HER催化活性的增强与吸附位点X pz带中心的下移密切相关, 氢吸附自由能与X pz带中心呈现正相关性, 表明X pz带中心可作为调控HER活性的关键电子描述符. 杂化泛函计算进一步证实, B掺杂体系的带边位置能够横跨水的氧化还原电势两侧, 且光吸收范围覆盖可见光区域, 表明了该体系在光催化全解水应用中的热力学可行性与光谱响应优势. 该研究为基于非金属掺杂策略设计高效非金属基光催化材料提供了重要理论指导.
    Under the dual challenges of the energy crisis and environmental pollution, the technology of photocatalytic water splitting for hydrogen production has become a research hotspot for clean energy due to its green and sustainable characteristics. Fibrous red phosphorus (FRP), as a novel quasi-one-dimensional semiconductor material, exhibits remarkable photocatalytic hydrogen evolution potential because of its moderate bandgap, high carrier mobility, and excellent air stability. Based on the first-principles calculations, the regulatory mechanisms of electronic structure and catalytic performance of single-layer FRP doped by a series of non-metallic elements X (X = B, C, N, O, Si, S, As, and Se) are systematically investigated in this work. The results show that the element X can effectively enhance the hydrogen evolution reaction (HER) activity of single-layer FRP. Among those doped systems, four specific systems (S-doped at site 1, B-doped at sites 1/2/5) exhibit excellent catalytic activity for HER. Especially, the B-doped system at site 2 has the most ideal free energy of hydrogen adsorption (ΔGH*), and its overpotential (η = –0.074 V) is comparable to that of the noble metal Pt catalyst. The analysis of the electronic structure indicates that the enhancement of the HER catalytic activity is closely related to the downward shift of the X pz-band center at the adsorption site. There is a direct proportional relationship between ΔGH* and the X pz-band center (R2 ≥ 0.78), indicating that the X pz-band center can serve as a key electronic descriptor for regulating the HER activity. Further verification by calculations using the HSE06 hybrid functional shows that the band edge positions of the B-doped system can span both sides of the redox potential of water, and the light absorption range covers the visible light region, indicating the thermodynamic feasibility and spectral response advantages of this system in the application of photocatalytic overall water splitting. This study provides important theoretical guidance for designing efficient FRP-based photocatalytic materials based on the non-metallic doping strategy.
      通信作者: 卢一林, yilinlu@tju.edu.cn ; 董盛杰, shengjiedong@tju.edu.cn
    • 基金项目: 渤海大学海洋研究院开放课题(批准号: BDHYYJY2023015)资助的课题.
      Corresponding author: LU Yilin, yilinlu@tju.edu.cn ; DONG Shengjie, shengjiedong@tju.edu.cn
    • Funds: Project supported by the Open Project of the Institute of Ocean, Bohai University, China (Grant No. BDHYYJY2023015).
    [1]

    Fujishima A, Honda K 1972 Nature 238 37Google Scholar

    [2]

    Yin W J, Tang H, Wei S H, Al-Jassim W M, Turner J, Yan Y F 2010 Phys. Rev. B 82 045106Google Scholar

    [3]

    Wei W, Dai Y, Guo M, Yu L, Huang B B 2009 J. Phys. Chem. C 113 15046Google Scholar

    [4]

    陈钱, 匡勤, 谢兆雄 2021 化学学报 79 10Google Scholar

    Chen Q, Kuang Q, Xie Z X 2021 Acta Chim. Sin. 79 10Google Scholar

    [5]

    Zou J, Liao G D, Jiang J Z, Xiong Z G, Bai S S, Wang H T, Wu P X, Zhang P, Li X 2022 Chin. J. Struct. Chem. 41 2201025Google Scholar

    [6]

    Zhang Z J, Zhu Y F, Chen X J, Zhang H J, Wang J 2019 Adv. Mater. 31 1806626Google Scholar

    [7]

    Wang X, Ma M, Zhao X W, Jiang P, Wang Y, Wang J H, Zhang J Y, Zhang F X 2023 Small Struct. 4 2300123Google Scholar

    [8]

    Zhu Y K, Ren J, Zhang X L, Yang D J 2020 Nanoscale 12 13297Google Scholar

    [9]

    Chen Z Y, Zhu Y B, Wang Q M, Liu W Y, Cui Y T, Tao X Y, Zhang D K 2019 Electrochim. Acta 295 230Google Scholar

    [10]

    Bachhuber F, Appen J, Dronskowski R, Schmidt P, Nilges T, Pfitzner A, Weihrich R 2014 Angew. Chem. Int. Ed. 53 11629Google Scholar

    [11]

    Smith J B, Hagaman D, DiGuiseppi D, Schweitzer-Stenner R, Ji H F 2016 Angew. Chem. Int. Ed. 55 11829Google Scholar

    [12]

    Amaral P E M, Nieman G P, Schwenk G R, Jing H, Zhang R, Cerkez E B, Strongin D, Ji H F 2019 Angew. Chem. Int. Ed. 58 6766Google Scholar

    [13]

    Thurn H, Kerbs H 2010 Angew. Chem. Int. Ed. 5 1047Google Scholar

    [14]

    Thurn H, Krebs H 1966 Angew. Chem. Int. Ed. Engl. 5 1047Google Scholar

    [15]

    Tsai H S, Lai C C, Hsiao C H, Medina H, Su T Y, Ouyang H, Chen T H, Liang J H, Chueh Y L 2015 ACS Appl. Mater. Interfaces 7 13723Google Scholar

    [16]

    Shen Z R, Hu Z F, Wang W J, Lee S F, Chan D K L, Li Y C, Gu T, Yu J C 2014 Nanoscale 6 14163Google Scholar

    [17]

    Sun Z J, Chen W J, Zhang B W, Gao L, Tao K Z, Li Q, Sun J L, Yan Q F 2023 Nat. Commun. 14 4398Google Scholar

    [18]

    He S, Liu D M, Zhang G Q, Chu F H, Xu G L, Li G L, Liu J F, Yang Y H, Zhang Y Z 2024 ACS Omega 9 43368Google Scholar

    [19]

    Du L J, Zhao Y C, Wu L L, Hu X R, Yao L D, Wang Y D, Bai X Y, Dai Y Y, Qiao J S, Uddin M G, Li X M, Lahtinen J, Bai X D, Zhang G Y, Ji W, Sun Z P 2021 Nat. Commun. 12 4822Google Scholar

    [20]

    Chu F H, Zhou W C, Zhou R K, Li S Y, Liu D M, Zheng Z L, Li J Z, Zhang Y Z 2022 J. Phys. Chem. Lett. 13 10778Google Scholar

    [21]

    Lu Y L, Dong S J, Li J S, Wu Y Q, Wang L, Zhao H 2020 Phys. Chem. Chem. Phys. 22 13713Google Scholar

    [22]

    Hu Z F, Guo W Q 2021 Small 17 2008004Google Scholar

    [23]

    Wang X H, An C Y, Zhang S J, Wang S S, Li J Z, Zhu Y K 2024 Sep. Purif. Technol. 340 126733Google Scholar

    [24]

    Dai S H, Zhou W, Liu Y Y, Lu Y L, Sun L L, Wu P 2018 Appl. Surf. Sci. 448 281Google Scholar

    [25]

    韩佳凝, 黄俊铭, 曹胜果, 李占海, 张振华 2023 72 197101Google Scholar

    Han J N, Huang J M, Cao S G, Li Z H, Zhang Z H 2023 Acta Phys. Sin. 72 197101Google Scholar

    [26]

    Zhang L, Liu Y Q, Xu Z Y, Gao G Y 2023 2D Mater. 10 045005

    [27]

    Zhang L, Liu Y Q, Wu M H, Gao G Y 2025 Adv. Funct. Mater. 35 2417857Google Scholar

    [28]

    黄广峥, 李坤玮, 罗艳楠, 张强, 潘远龙, 高洪 2024 化学学报 82 314Google Scholar

    Huang G Z, Li K W, Luo Y N, Zhang Q, Pan Y L, Gao H 2024 Acta Chim. Sin. 82 314Google Scholar

    [29]

    Liu H H, Cao X R, Ding L X, Wang H H 2022 Adv. Funct. Mater. 32 2111161Google Scholar

    [30]

    Hu H G, Shi Z, Khan K, Cao R, Liang W Y, Tareen A K, Zhang Y, Huang W C, Guo Z N, Luo X L, Zhang H 2020 J. Mater. Chem. A 8 5421Google Scholar

    [31]

    Lu Y L, Dong S J, He H Y, Li J S, Wang X Y, Zhao H, Wu P 2019 Comput. Mater. Sci. 163 209Google Scholar

    [32]

    卢一林, 董盛杰, 崔方超, 张开成, 刘春梅, 李杰森, 毛卓 2024 73 016301Google Scholar

    Lu Y L, Dong S J, Cui F C, Zhang K C, Liu C M, Li J S, Mao Z 2024 Acta Phys. Sin. 73 016301Google Scholar

    [33]

    Lu Y L, Dong S J, Cui F C, Zhang K C, Liu C M, Li J S, Mao Z 2025 Int. J. Hydrogen Energy 101 222Google Scholar

    [34]

    Lu Y L, Dong S J, He H Y, Li J S, Wu X Y, Zhao H 2022 Physica E 138 115068Google Scholar

    [35]

    He Q Y, Wang D D, Qiu H X, Si N, Yuan Q L, Wang R, Liu S Y, Wang Y M 2024 ACS Nano 19 427Google Scholar

    [36]

    Zhao X W, Gu M Y, Zhai R, Zhang Y H, Jin M T, Wang Y H, Li J F, Cheng Y H, Xiao B, Zhang J Y 2023 Small 19 2302859Google Scholar

    [37]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 R558Google Scholar

    [38]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [39]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [40]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [41]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [42]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [43]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [44]

    Ruck M, Hoppe D, Wahl B, Simon P, Wang Y, Seifert G 2005 Angew. Chem. Int Ed. 44 7616Google Scholar

    [45]

    Zhang B B, Mao Z, Wu P 2021 Appl. Surf. Sci. 565 150546Google Scholar

    [46]

    Casolo S, Lovvik O M, Martinazzo R, Tantardini G F 2009 J. Chem. Phys. 130 10Google Scholar

    [47]

    Kulish V V, Malyi O I, Persson C, Wu P 2015 Phys. Chem. Chem. Phys. 17 992Google Scholar

    [48]

    Eftekhari A 2017 Int. J. Hydrogen Energy 42 11053Google Scholar

    [49]

    Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U 2005 J. Electrochem. Soc. 152 J23Google Scholar

    [50]

    Zhao Y M, Ma D W, Zhang J, Lu Z S, Wang Y X 2019 Phys. Chem. Chem. Phys. 21 20432Google Scholar

    [51]

    Yuan J, Wang C, Liu Y Y, Wu P, Zhou W 2018 J. Phys. Chem. C 123 526Google Scholar

    [52]

    Zhou S, Yang X W, Pei W, Liu N S, Zhao J J 2018 Nanoscale 10 10876Google Scholar

    [53]

    Pei W, Zhou S, Bai Y Z, Zhao J J 2018 Carbon 133 260Google Scholar

    [54]

    Tsai C, Abild-Pedersen F, Nørskov J K 2014 Nano Lett. 14 1381Google Scholar

    [55]

    卢一林, 董盛杰, 崔方超, 薄婷婷, 毛卓 2025 化学学报 83 377Google Scholar

    Lu Y L, Dong S J, Cui F C, Bo T T, Mao Z 2025 Acta Chim. Sin. 83 377Google Scholar

    [56]

    Chen Y X, Shi T T, Liu P Y, Ma X G, Shui L L, Shang C Q, Chen Z H, Wang X, Kempa K, Zhou G F 2018 J. Mater. Chem. A 6 19167Google Scholar

    [57]

    Liao J M, Sa B S, Zhou J, Ahuja R, Sun Z M 2014 J. Phys. Chem. C 118 17594Google Scholar

    [58]

    Liu J J, Cheng B, Yu J G 2016 Phys. Chem. Chem. Phys. 18 31175Google Scholar

    [59]

    Zhang Y, Qiang Z B, Ding J X, Xie K X, Duan L, Ni L 2024 CrystEngComm 26 2621Google Scholar

  • 图 1  GGA-PBE泛函计算得到的单层FRP的(a)优化结构俯视图和侧视图, 其中数字1—6表示H吸附的顶位, 7表示H吸附的空心位, 8和9为H吸附的桥位; (b)能带结构和态密度; (c)析氢反应的吉布斯自由能图; (d)第一布里渊区

    Fig. 1.  (a) Top and side views of the optimized structure, where the numbers 1–6 represent the top sites for hydrogen adsorption, 7 represents the hollow site for hydrogen adsorption, and 8 and 9 are the bridge sites for hydrogen adsorption; (b) band structure and density of states; (c) Gibbs free energy illustration of hydrogen evolution reaction (HER); (d) the first Brillouin zone of FRP monolayer at the GGA-PBE level.

    图 2  GGA-PBE泛函计算得到的X掺杂单层FRP的(a)缺陷形成能和(b)氢吸附能

    Fig. 2.  At the GGA-PBE level, the calculated (a) defect formation energies and (b) hydrogen adsorption energies of X-doped FRP monolayer.

    图 3  GGA-PBE泛函计算得到的掺杂体系在不同掺杂位点下的ΔGH*计算结果 (a)位点1; (b)位点2; (c)位点3; (d)位点4; (e)位点5; (f)位点6

    Fig. 3.  At the GGA-PBE level, the calculated ΔGH* results of the doped systems at different doping sites: (a) Site 1; (b) site 2; (c) site 3; (d) site 4; (e) site 5; (f) site 6.

    图 4  GGA-PBE泛函计算得到的掺杂体系在不同掺杂位点下的ΔGH*X pz带中心的相关性 (a)位点1; (b)位点2; (c)位点3; (d)位点4; (e)位点5; (f)位点6

    Fig. 4.  At the GGA-PBE level, the ΔGH* as a function of the X pz band center at different doping sites: (a) Site 1; (b) site 2; (c) site 3; (d) site 4; (e) site 5; (f) site 6.

    图 5  GGA-PBE泛函计算得到的掺杂体系在位点1下的投影能带结构图 (a) B掺杂; (b) N掺杂; (c) O掺杂; (d) S掺杂; (e) As掺杂; (f) Se掺杂, 其中蓝色方形的大小代表X p轨道的权重

    Fig. 5.  At the GGA-PBE level, orbital-resolved energy band structures of the doped systems at site 1: (a) B doping; (b) N doping; (c) O doping; (d) S doping; (e) As doping; (f) Se doping, the size of the blue square represents the weight of the X p orbital projection.

    图 6  GGA-PBE泛函计算得到的掺杂体系在位点1下的态密度图 (a) B掺杂; (b) N掺杂; (c) O掺杂; (d) S掺杂; (e) As掺杂; (f) Se掺杂

    Fig. 6.  At the GGA-PBE level, the density of states of the doped systems for doped system at site 1: (a) B doping; (b) N doping; (c) O doping; (d) S doping; (e) As doping; (d) Se doping.

    图 7  GGA-PBE泛函计算得到的氢吸附于活性位点1时掺杂体系的投影态密度图

    Fig. 7.  At the GGA-PBE level, the projected DOS of an H atom adsorbed on the active site 1 of the doped systems.

    图 8  (a) GGA-PBE泛函计算得到的氢分别吸附于活性位点3、位点2和位点6时掺杂体系的投影态密度图; (b) 掺杂体系与吸附物H (Ads.)之间成键的示意图

    Fig. 8.  (a) At the GGA-PBE level, the projected DOS of an H atom adsorbed on the active site 3, site 2, and site 6 of the doped systems; (b) schematic illustration of bond formation between the doped systems and the adsorbate H (Ads.).

    图 9  GGA-PBE泛函计算得到的过电位随ΔGH*变化的火山曲线图, 插图为–0.25—0.25 eV区间内过电势与ΔGH*关系放大图

    Fig. 9.  At the GGA-PBE level, the volcano curves of overpotential as functions of ΔGH* for all the doped systems, the inset represents the magnification of overpotential as functions of ΔGH* in the range of –0.25–0.25 eV.

    图 10  HSE06杂化泛函计算得到的火山顶4种掺杂体系与单层磷烯(FRP, VP[55]和BP[56])、单层二硫化物(SnS2[55]和MoS2[57])、单层g-C3N4[58]及BiVO4(001)[56]表面的导带和价带的带边位置与水分解氧化还原电位的相对关系, 图中灰色区域表示杂质带

    Fig. 10.  At the HSE06 level, the conduction and valence band edge positions and the redox potential of water splitting of the four doped systems at the volcano peak, single-layer phosphorene (FRP, VP[55], and BP[56]), single-layer disulfides (SnS2[55] and MoS2[57]), single-layer g-C3N4[58], and BiVO4 (001)[56] surface. The gray area represents the impurity band.

    图 11  HSE06杂化泛函计算得到的火山顶部4种掺杂体系的光吸收谱(左轴). 彩色区域为AM 1.5G太阳光谱图(右轴)[59]

    Fig. 11.  At the HSE06 level, optical absorbance spectra of the four doped systems at the volcano peak (left axis). The incident AM 1.5G solar flux spectrum (right axis) [59].

    Baidu
  • [1]

    Fujishima A, Honda K 1972 Nature 238 37Google Scholar

    [2]

    Yin W J, Tang H, Wei S H, Al-Jassim W M, Turner J, Yan Y F 2010 Phys. Rev. B 82 045106Google Scholar

    [3]

    Wei W, Dai Y, Guo M, Yu L, Huang B B 2009 J. Phys. Chem. C 113 15046Google Scholar

    [4]

    陈钱, 匡勤, 谢兆雄 2021 化学学报 79 10Google Scholar

    Chen Q, Kuang Q, Xie Z X 2021 Acta Chim. Sin. 79 10Google Scholar

    [5]

    Zou J, Liao G D, Jiang J Z, Xiong Z G, Bai S S, Wang H T, Wu P X, Zhang P, Li X 2022 Chin. J. Struct. Chem. 41 2201025Google Scholar

    [6]

    Zhang Z J, Zhu Y F, Chen X J, Zhang H J, Wang J 2019 Adv. Mater. 31 1806626Google Scholar

    [7]

    Wang X, Ma M, Zhao X W, Jiang P, Wang Y, Wang J H, Zhang J Y, Zhang F X 2023 Small Struct. 4 2300123Google Scholar

    [8]

    Zhu Y K, Ren J, Zhang X L, Yang D J 2020 Nanoscale 12 13297Google Scholar

    [9]

    Chen Z Y, Zhu Y B, Wang Q M, Liu W Y, Cui Y T, Tao X Y, Zhang D K 2019 Electrochim. Acta 295 230Google Scholar

    [10]

    Bachhuber F, Appen J, Dronskowski R, Schmidt P, Nilges T, Pfitzner A, Weihrich R 2014 Angew. Chem. Int. Ed. 53 11629Google Scholar

    [11]

    Smith J B, Hagaman D, DiGuiseppi D, Schweitzer-Stenner R, Ji H F 2016 Angew. Chem. Int. Ed. 55 11829Google Scholar

    [12]

    Amaral P E M, Nieman G P, Schwenk G R, Jing H, Zhang R, Cerkez E B, Strongin D, Ji H F 2019 Angew. Chem. Int. Ed. 58 6766Google Scholar

    [13]

    Thurn H, Kerbs H 2010 Angew. Chem. Int. Ed. 5 1047Google Scholar

    [14]

    Thurn H, Krebs H 1966 Angew. Chem. Int. Ed. Engl. 5 1047Google Scholar

    [15]

    Tsai H S, Lai C C, Hsiao C H, Medina H, Su T Y, Ouyang H, Chen T H, Liang J H, Chueh Y L 2015 ACS Appl. Mater. Interfaces 7 13723Google Scholar

    [16]

    Shen Z R, Hu Z F, Wang W J, Lee S F, Chan D K L, Li Y C, Gu T, Yu J C 2014 Nanoscale 6 14163Google Scholar

    [17]

    Sun Z J, Chen W J, Zhang B W, Gao L, Tao K Z, Li Q, Sun J L, Yan Q F 2023 Nat. Commun. 14 4398Google Scholar

    [18]

    He S, Liu D M, Zhang G Q, Chu F H, Xu G L, Li G L, Liu J F, Yang Y H, Zhang Y Z 2024 ACS Omega 9 43368Google Scholar

    [19]

    Du L J, Zhao Y C, Wu L L, Hu X R, Yao L D, Wang Y D, Bai X Y, Dai Y Y, Qiao J S, Uddin M G, Li X M, Lahtinen J, Bai X D, Zhang G Y, Ji W, Sun Z P 2021 Nat. Commun. 12 4822Google Scholar

    [20]

    Chu F H, Zhou W C, Zhou R K, Li S Y, Liu D M, Zheng Z L, Li J Z, Zhang Y Z 2022 J. Phys. Chem. Lett. 13 10778Google Scholar

    [21]

    Lu Y L, Dong S J, Li J S, Wu Y Q, Wang L, Zhao H 2020 Phys. Chem. Chem. Phys. 22 13713Google Scholar

    [22]

    Hu Z F, Guo W Q 2021 Small 17 2008004Google Scholar

    [23]

    Wang X H, An C Y, Zhang S J, Wang S S, Li J Z, Zhu Y K 2024 Sep. Purif. Technol. 340 126733Google Scholar

    [24]

    Dai S H, Zhou W, Liu Y Y, Lu Y L, Sun L L, Wu P 2018 Appl. Surf. Sci. 448 281Google Scholar

    [25]

    韩佳凝, 黄俊铭, 曹胜果, 李占海, 张振华 2023 72 197101Google Scholar

    Han J N, Huang J M, Cao S G, Li Z H, Zhang Z H 2023 Acta Phys. Sin. 72 197101Google Scholar

    [26]

    Zhang L, Liu Y Q, Xu Z Y, Gao G Y 2023 2D Mater. 10 045005

    [27]

    Zhang L, Liu Y Q, Wu M H, Gao G Y 2025 Adv. Funct. Mater. 35 2417857Google Scholar

    [28]

    黄广峥, 李坤玮, 罗艳楠, 张强, 潘远龙, 高洪 2024 化学学报 82 314Google Scholar

    Huang G Z, Li K W, Luo Y N, Zhang Q, Pan Y L, Gao H 2024 Acta Chim. Sin. 82 314Google Scholar

    [29]

    Liu H H, Cao X R, Ding L X, Wang H H 2022 Adv. Funct. Mater. 32 2111161Google Scholar

    [30]

    Hu H G, Shi Z, Khan K, Cao R, Liang W Y, Tareen A K, Zhang Y, Huang W C, Guo Z N, Luo X L, Zhang H 2020 J. Mater. Chem. A 8 5421Google Scholar

    [31]

    Lu Y L, Dong S J, He H Y, Li J S, Wang X Y, Zhao H, Wu P 2019 Comput. Mater. Sci. 163 209Google Scholar

    [32]

    卢一林, 董盛杰, 崔方超, 张开成, 刘春梅, 李杰森, 毛卓 2024 73 016301Google Scholar

    Lu Y L, Dong S J, Cui F C, Zhang K C, Liu C M, Li J S, Mao Z 2024 Acta Phys. Sin. 73 016301Google Scholar

    [33]

    Lu Y L, Dong S J, Cui F C, Zhang K C, Liu C M, Li J S, Mao Z 2025 Int. J. Hydrogen Energy 101 222Google Scholar

    [34]

    Lu Y L, Dong S J, He H Y, Li J S, Wu X Y, Zhao H 2022 Physica E 138 115068Google Scholar

    [35]

    He Q Y, Wang D D, Qiu H X, Si N, Yuan Q L, Wang R, Liu S Y, Wang Y M 2024 ACS Nano 19 427Google Scholar

    [36]

    Zhao X W, Gu M Y, Zhai R, Zhang Y H, Jin M T, Wang Y H, Li J F, Cheng Y H, Xiao B, Zhang J Y 2023 Small 19 2302859Google Scholar

    [37]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 R558Google Scholar

    [38]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [39]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [40]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [41]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [42]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [43]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [44]

    Ruck M, Hoppe D, Wahl B, Simon P, Wang Y, Seifert G 2005 Angew. Chem. Int Ed. 44 7616Google Scholar

    [45]

    Zhang B B, Mao Z, Wu P 2021 Appl. Surf. Sci. 565 150546Google Scholar

    [46]

    Casolo S, Lovvik O M, Martinazzo R, Tantardini G F 2009 J. Chem. Phys. 130 10Google Scholar

    [47]

    Kulish V V, Malyi O I, Persson C, Wu P 2015 Phys. Chem. Chem. Phys. 17 992Google Scholar

    [48]

    Eftekhari A 2017 Int. J. Hydrogen Energy 42 11053Google Scholar

    [49]

    Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U 2005 J. Electrochem. Soc. 152 J23Google Scholar

    [50]

    Zhao Y M, Ma D W, Zhang J, Lu Z S, Wang Y X 2019 Phys. Chem. Chem. Phys. 21 20432Google Scholar

    [51]

    Yuan J, Wang C, Liu Y Y, Wu P, Zhou W 2018 J. Phys. Chem. C 123 526Google Scholar

    [52]

    Zhou S, Yang X W, Pei W, Liu N S, Zhao J J 2018 Nanoscale 10 10876Google Scholar

    [53]

    Pei W, Zhou S, Bai Y Z, Zhao J J 2018 Carbon 133 260Google Scholar

    [54]

    Tsai C, Abild-Pedersen F, Nørskov J K 2014 Nano Lett. 14 1381Google Scholar

    [55]

    卢一林, 董盛杰, 崔方超, 薄婷婷, 毛卓 2025 化学学报 83 377Google Scholar

    Lu Y L, Dong S J, Cui F C, Bo T T, Mao Z 2025 Acta Chim. Sin. 83 377Google Scholar

    [56]

    Chen Y X, Shi T T, Liu P Y, Ma X G, Shui L L, Shang C Q, Chen Z H, Wang X, Kempa K, Zhou G F 2018 J. Mater. Chem. A 6 19167Google Scholar

    [57]

    Liao J M, Sa B S, Zhou J, Ahuja R, Sun Z M 2014 J. Phys. Chem. C 118 17594Google Scholar

    [58]

    Liu J J, Cheng B, Yu J G 2016 Phys. Chem. Chem. Phys. 18 31175Google Scholar

    [59]

    Zhang Y, Qiang Z B, Ding J X, Xie K X, Duan L, Ni L 2024 CrystEngComm 26 2621Google Scholar

  • [1] 王坤, 徐鹤嫣, 郑雄, 张海丰. 第一性原理计算研究Cr掺杂CuZr2的电子结构、弹性性质和硬度.  , 2025, 74(13): 137101. doi: 10.7498/aps.74.20250264
    [2] 胡军平, 梁丝思, 段惠贤, 田俊程, 陈硕, 戴柏杨, 黄春来, 刘宇, 吕营, 万利佳, 欧阳楚英. 氮氧锚定的单原子铜掺杂石墨烯作为碱离子电池负极的理论预测研究.  , 2025, 74(3): 033101. doi: 10.7498/aps.74.20241461
    [3] 万煜炜, 王瑞, 周文权, 王一平, 蔡亚楠, 王常. Ag, Cu掺杂氧化石墨烯吸附NH3的第一性原理研究.  , 2025, 74(7): 073101. doi: 10.7498/aps.74.20241737
    [4] 雷雪玲, 朱巨湧, 柯强, 欧阳楚英. 第一性原理研究硼掺杂氧化石墨烯对过氧化锂氧化反应的催化机理.  , 2024, 73(9): 098804. doi: 10.7498/aps.73.20240197
    [5] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算.  , 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [6] 王逸飞, 李晓薇. 石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算.  , 2018, 67(11): 116301. doi: 10.7498/aps.67.20172220
    [7] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质.  , 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [8] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究.  , 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [9] 李聪, 郑友进, 付斯年, 姜宏伟, 王丹. 稀土(La/Ce/Pr/Nd)掺杂锐钛矿相TiO2磁性及光催化活性的第一性原理研究.  , 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [10] 朱玥, 李永成, 王福合. Li掺杂对MgH2(001)表面H2分子扩散释放影响的第一性原理研究.  , 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [11] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究.  , 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [12] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究.  , 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [13] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究.  , 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [14] 王涛, 陈建峰, 乐园. I掺杂金红石TiO2(110)面的第一性原理研究.  , 2014, 63(20): 207302. doi: 10.7498/aps.63.207302
    [15] 张学军, 张光富, 金辉霞, 朱良迪, 柳清菊. N, Co共掺杂锐钛矿相TiO2光催化剂的第一性原理研究.  , 2013, 62(1): 017102. doi: 10.7498/aps.62.017102
    [16] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究.  , 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [17] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [18] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质.  , 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [19] 梁培, 王乐, 熊斯雨, 董前民, 李晓艳. Mo-X(B, C, N, O, F)共掺杂TiO2体系的光催化协同效应研究.  , 2012, 61(5): 053101. doi: 10.7498/aps.61.053101
    [20] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究.  , 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
计量
  • 文章访问数:  548
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-24
  • 修回日期:  2025-05-27
  • 上网日期:  2025-06-18
  • 刊出日期:  2025-08-20

/

返回文章
返回
Baidu
map