搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于脉管制冷机预冷的1 K大冷量低温系统

刘旭明 查奎帆 马帅 韩丽明 谢晓霖 郭伟杰 潘长钊

引用本文:
Citation:

基于脉管制冷机预冷的1 K大冷量低温系统

刘旭明, 查奎帆, 马帅, 韩丽明, 谢晓霖, 郭伟杰, 潘长钊

A high-capacity 1-K cryogenic system pre-cooled by pulse tube cryocooler

LIU Xuming, ZHA Kuifan, MA Shuai, HAN Liming, XIE Xiaolin, GUO Weijie, PAN Changzhao
cstr: 32037.14.aps.74.20250181
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 1 K低温系统是进一步实现mK温区及更低温度的基础, 广泛应用于量子计算、凝聚态物理研究、低温科学仪器等领域. 目前国内的1 K低温系统大多使用GM (Gifford-McMahon)制冷机进行预冷, 系统在实现更低振动控制、更低电噪声干扰、更低预冷温度和更高液化效率等方面存在一定难题, 而基于脉管制冷机预冷的1 K系统在解决这些问题方面具有先天优势. 本文发展了一台全国产化的4 K GM脉管制冷机, 获得了2.14 K的最低制冷温度, 并可同时提供1.5 W@4.2 K和45 W@45 K的制冷量. 将其作为预冷制冷机, 设计并搭建了1 K低温系统, 最终获得了1.1 K的最低制冷温度, 并可在1.6 K提供100 mW的制冷量. 本研究为后续开展更大冷量稀释制冷技术奠定了重要基础.
    A 1-K cryogenic system can provide a stable and necessary low-temperature environment for some fields such as quantum computing, condensed matter physics research, and cryogenic scientific instruments. Specifically, in the field of basic research, 1 K is an ideal condition for studying quantum phenomena in low-temperature physics, such as quantum Hall effect and topological phase transition; in the field of technical applications, 1 K is a necessary condition for some quantum devices, such as superconducting quantum interferometers and single-photon detectors, to achieve high-sensitivity operation; in the field of ultra-low temperature technology, 1 K is the pre-cooling stage of refrigeration technologies, such as dilution refrigerators, and is also the basis for further achieving mK temperature ranges and lower temperatures. At present, in most of domestic 1-K systems, GM (Gifford-McMahon) cryocoolers are used for pre-cooling. These systems encounter some difficulties in achieving lower vibration control, lower electrical noise interference, lower pre-cooling temperature, and higher liquefaction efficiency. The 1-K systems based on pulse tube cryocoolers pre-cooling have inherent advantages in solving these problems. In this work, a 4-K GM-type pulse tube cryocooler is first developed by using a domestic helium compressor and a developed rotary valve, and the cold-end heat exchanger and the room-temperature phase shifters are redesigned in order to achieve a minimum cooling temperature of 2.14 K, and provide 1.5 W at 4.2 K and 45 W at 45 K cooling capacity simultaneously. With the home-made pulse tube cryocooler as the pre-cooling stage, a 1-K cryogenic system is further constructed. By designing key components such as JT flow resistance, combined thermal switch, and anti-superflow structure, a minimum cooling temperature of 1.1 K is achieved, with a cooling capacity of 100 mW at 1.6 K. This study lays an important foundation for subsequently developing dilution refrigerators with larger cooling capacity.
      通信作者: 潘长钊, pancz@iqasz.cn
    • 基金项目: 国家重点研发计划(批准号: 2023YFF0721303)、广东省基础与应用基础研究基金(批准号: 2024A1515012045)和深圳市科技计划(批准号: RCBS20221008093120048)资助的课题.
      Corresponding author: PAN Changzhao, pancz@iqasz.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2023YFF0721303), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2024A1515012045), and the Science and Technology Program of Shenzhen, China (Grant No. RCBS20221008093120048).
    [1]

    Zhao Z Y, Wang C 2019 Cryogenic Engineering and Technologies: Principles and Applications of Cryogen-Free Systems (CRC Press) p233

    [2]

    李珂, 王亚男, 刘萍, 禹芳秋, 戴巍, 沈俊 2023 72 190702Google Scholar

    Li K, Wang Y N, Liu P, Yu F Q, Dai W, Shen J 2023 Acta Phys. Sin. 72 190702Google Scholar

    [3]

    俎红叶, 程维军, 王亚男, 王晓涛, 李珂, 戴巍 2023 72 080701Google Scholar

    Zu H Y, Cheng W J, Wang Y N, Wang X T, Li K, Dai W 2023 Acta Phys. Sin. 72 080701Google Scholar

    [4]

    王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远 2021 70 090702Google Scholar

    Wang C, Li K, Shen J, Dai W, Wang Y N, Luo E C, Shen B G, Zhou Y 2021 Acta Phys. Sin. 70 090702Google Scholar

    [5]

    Zheng M W, Guo H W, Wei L J, Pan Z J, Zou J R, Li R X, Zhao M G, Chen H L, Liang J T 2024 Acta Phys. Sin. 73 230701 (In Chinese) [郑茂文, 郭浩文, 卫铃佼, 潘子杰, 邹佳润, 李瑞鑫, 赵密广, 陈厚磊, 梁惊涛 2024 73 230701]Google Scholar

    Zheng M W, Guo H W, Wei L J, Pan Z J, Zou J R, Li R X, Zhao M G, Chen H L, Liang J T 2024 Acta Phys. Sin. 73 230701 (In Chinese)Google Scholar

    [6]

    Guan X, Fan J, Bian Y B, Cheng Z G, Ji Z Q 2024 Chin. Phys. B 33 070701Google Scholar

    [7]

    Jahromi A E, Miller F K 2014 Cryogenics 61 15Google Scholar

    [8]

    DeMann A, Mueller S, Field S B 2016 Cryogenics 73 60Google Scholar

    [9]

    Cao H 2021 J. Low Temp. Phys. 204 175Google Scholar

    [10]

    Bluefors and Cryomech 1 K systems products https://bluefors.com/products/1k-systems/

    [11]

    Oxford Instruments 1 K cryostats products https://nanoscience.oxinst.com/dry-systems/products/teslatronpt

    [12]

    Quantum Design 1 K measurement systems products https://www.qd-china.com/zh/pro/detail3/1/1912091422155/1909260926498

    [13]

    Wang L G, Qu Q X, Chen H, Dai N N, Zhao W Y, Jia P, Xu D, Li L F 2025 Cryogenics 145 103992Google Scholar

    [14]

    Pengli 1 K cryostats products https://isite.baidu.com/site/wjzru1zo/96a2066c-8800-4095-9ec4-a0489538571f?ch=48&wid=6dfbf96df3554e288101d75dc1ec8912_0_0&uniqId=c4db65aa10714a8697008f3c034cf058

    [15]

    ZL Cryogenic 1 K cryostats products http://zlcryogenic.com/display/141459.html

    [16]

    Radebaugh R. 2009 J. Phys. Condens. Matter 21 164219Google Scholar

    [17]

    Liu X M, Chen L B, Wu X L, Yang B, Wang J, Zhu W X, Wang J J, Zhou Y 2020 Sci. China Technol. Sci. 63 434Google Scholar

    [18]

    Wang C 2016 Cryocoolers 19 299

    [19]

    Wang C, Hanrahan T, Johnson M 2018 Cryogenics 95 64Google Scholar

    [20]

    Wang C, Lichtenwalter B, Friebel A, Tang H X 2014 Cryogenics 64 5Google Scholar

    [21]

    Qu Q X, Wang L G, Chen H, Dai N N, Jia P, Xu D, Li L F 2024 Cryogenics 138 103797Google Scholar

    [22]

    Wu S G, Zhao B J, Tan J, Zhao Y J, Zhai Y J, Xue R J, Tan H, Ma D, Wu D R, Dang H Z 2023 Energy 277 127691Google Scholar

    [23]

    Shen Y W, Liu D L, Chen S F, Zhao Q Y, Liu L, Gan Z H, Qiu M 2020 Appl. Therm. Eng. 166 114667Google Scholar

    [24]

    Li X, Xu D, Wang W, Lin P, Liu H M, Nishimura A, Shen F Z, Li L F 2019 Cryogenics 102 50Google Scholar

    [25]

    Uhlig K 2002 Cryogenics 42 73Google Scholar

    [26]

    Wang C 2001 Cryogenics 41 491Google Scholar

    [27]

    Liu X M, Pan C Z, Zhang Y, Liao Y, Guo W J, Yu D P 2023 Acta Phys. Sin. 72 190701 (In Chinese) [刘旭明, 潘长钊, 张宇, 廖奕, 郭伟杰, 俞大鹏 2023 72 190701]Google Scholar

    Liu X M, Pan C Z, Zhang Y, Liao Y, Guo W J, Yu D P 2023 Acta Phys. Sin. 72 190701 (In Chinese)Google Scholar

  • 图 1  工质氦4压焓图

    Fig. 1.  The pressure-enthalpy diagram of the helium-4.

    图 2  基于脉管制冷机预冷的1 K低温系统结构示意图

    Fig. 2.  Schematic diagram of the 1 K cryogenic system pre-cooled by a pulse tube refrigerator.

    图 3  实验系统实物照片

    Fig. 3.  Photograph of the experimental system.

    图 4  1 K气路系统流程示意图

    Fig. 4.  Schematic diagram of the 1 K gas circuit system.

    图 5  4 K脉管制冷机典型制冷性能 (a)降温曲线, (b)制冷量

    Fig. 5.  Typical cooling performance of the developed 4 K pulse tube refrigerator: (a) Cooling curve; (b) cooling capacity.

    图 6  1 K低温系统典型制冷性能 (a)降温曲线; (b)制冷量

    Fig. 6.  Typical cooling performance of the 1 K cryogenic system: (a) Cooling curve; (b) cooling capacity.

    图 7  制冷量和工质流量与制冷温度关系变化曲线

    Fig. 7.  The relationship curve between cooling capacity, working flow and cooling temperature.

    表 1  自研脉管制冷机与国外产品比较

    Table 1.  Comparison between the developed prototype and foreign 4 K GM-type PTRs.

    时间 最低温度 一级制冷量 二级制冷量 功耗 备注
    Cryomech PT415-RM <60 min <2.8 K 40 W @ 45 K 1.35 W @ 4.2 K 9.2 kW 阀分离
    住友RP-182B2S <60 min <2.8 K 36 W @ 48 K 1.5 W @ 4.2 K 11.8 kW 阀分离
    本文 <40 min 2.14 K 45 W @ 45 K 1.5 W @ 4.2 K 14 kW 阀分离
    下载: 导出CSV
    Baidu
  • [1]

    Zhao Z Y, Wang C 2019 Cryogenic Engineering and Technologies: Principles and Applications of Cryogen-Free Systems (CRC Press) p233

    [2]

    李珂, 王亚男, 刘萍, 禹芳秋, 戴巍, 沈俊 2023 72 190702Google Scholar

    Li K, Wang Y N, Liu P, Yu F Q, Dai W, Shen J 2023 Acta Phys. Sin. 72 190702Google Scholar

    [3]

    俎红叶, 程维军, 王亚男, 王晓涛, 李珂, 戴巍 2023 72 080701Google Scholar

    Zu H Y, Cheng W J, Wang Y N, Wang X T, Li K, Dai W 2023 Acta Phys. Sin. 72 080701Google Scholar

    [4]

    王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远 2021 70 090702Google Scholar

    Wang C, Li K, Shen J, Dai W, Wang Y N, Luo E C, Shen B G, Zhou Y 2021 Acta Phys. Sin. 70 090702Google Scholar

    [5]

    Zheng M W, Guo H W, Wei L J, Pan Z J, Zou J R, Li R X, Zhao M G, Chen H L, Liang J T 2024 Acta Phys. Sin. 73 230701 (In Chinese) [郑茂文, 郭浩文, 卫铃佼, 潘子杰, 邹佳润, 李瑞鑫, 赵密广, 陈厚磊, 梁惊涛 2024 73 230701]Google Scholar

    Zheng M W, Guo H W, Wei L J, Pan Z J, Zou J R, Li R X, Zhao M G, Chen H L, Liang J T 2024 Acta Phys. Sin. 73 230701 (In Chinese)Google Scholar

    [6]

    Guan X, Fan J, Bian Y B, Cheng Z G, Ji Z Q 2024 Chin. Phys. B 33 070701Google Scholar

    [7]

    Jahromi A E, Miller F K 2014 Cryogenics 61 15Google Scholar

    [8]

    DeMann A, Mueller S, Field S B 2016 Cryogenics 73 60Google Scholar

    [9]

    Cao H 2021 J. Low Temp. Phys. 204 175Google Scholar

    [10]

    Bluefors and Cryomech 1 K systems products https://bluefors.com/products/1k-systems/

    [11]

    Oxford Instruments 1 K cryostats products https://nanoscience.oxinst.com/dry-systems/products/teslatronpt

    [12]

    Quantum Design 1 K measurement systems products https://www.qd-china.com/zh/pro/detail3/1/1912091422155/1909260926498

    [13]

    Wang L G, Qu Q X, Chen H, Dai N N, Zhao W Y, Jia P, Xu D, Li L F 2025 Cryogenics 145 103992Google Scholar

    [14]

    Pengli 1 K cryostats products https://isite.baidu.com/site/wjzru1zo/96a2066c-8800-4095-9ec4-a0489538571f?ch=48&wid=6dfbf96df3554e288101d75dc1ec8912_0_0&uniqId=c4db65aa10714a8697008f3c034cf058

    [15]

    ZL Cryogenic 1 K cryostats products http://zlcryogenic.com/display/141459.html

    [16]

    Radebaugh R. 2009 J. Phys. Condens. Matter 21 164219Google Scholar

    [17]

    Liu X M, Chen L B, Wu X L, Yang B, Wang J, Zhu W X, Wang J J, Zhou Y 2020 Sci. China Technol. Sci. 63 434Google Scholar

    [18]

    Wang C 2016 Cryocoolers 19 299

    [19]

    Wang C, Hanrahan T, Johnson M 2018 Cryogenics 95 64Google Scholar

    [20]

    Wang C, Lichtenwalter B, Friebel A, Tang H X 2014 Cryogenics 64 5Google Scholar

    [21]

    Qu Q X, Wang L G, Chen H, Dai N N, Jia P, Xu D, Li L F 2024 Cryogenics 138 103797Google Scholar

    [22]

    Wu S G, Zhao B J, Tan J, Zhao Y J, Zhai Y J, Xue R J, Tan H, Ma D, Wu D R, Dang H Z 2023 Energy 277 127691Google Scholar

    [23]

    Shen Y W, Liu D L, Chen S F, Zhao Q Y, Liu L, Gan Z H, Qiu M 2020 Appl. Therm. Eng. 166 114667Google Scholar

    [24]

    Li X, Xu D, Wang W, Lin P, Liu H M, Nishimura A, Shen F Z, Li L F 2019 Cryogenics 102 50Google Scholar

    [25]

    Uhlig K 2002 Cryogenics 42 73Google Scholar

    [26]

    Wang C 2001 Cryogenics 41 491Google Scholar

    [27]

    Liu X M, Pan C Z, Zhang Y, Liao Y, Guo W J, Yu D P 2023 Acta Phys. Sin. 72 190701 (In Chinese) [刘旭明, 潘长钊, 张宇, 廖奕, 郭伟杰, 俞大鹏 2023 72 190701]Google Scholar

    Liu X M, Pan C Z, Zhang Y, Liao Y, Guo W J, Yu D P 2023 Acta Phys. Sin. 72 190701 (In Chinese)Google Scholar

  • [1] 李瑞, 沈俊, 张志鹏, 李振兴, 莫兆军, 高新强, 海鹏, 付琪. 基于不同流动时间占比的紧凑式室温磁制冷系统实验研究.  , 2024, 73(3): 037501. doi: 10.7498/aps.73.20231066
    [2] 郑茂文, 郭浩文, 卫铃佼, 潘子杰, 邹佳润, 李瑞鑫, 赵密广, 陈厚磊, 梁惊涛. 稀释制冷技术.  , 2024, 73(23): 230701. doi: 10.7498/aps.73.20241211
    [3] 李珂, 王亚男, 刘萍, 禹芳秋, 戴巍, 沈俊. 50 mK多级绝热去磁制冷机的实验研究.  , 2023, 72(19): 190702. doi: 10.7498/aps.72.20231102
    [4] 刘旭明, 潘长钊, 张宇, 廖奕, 郭伟杰, 俞大鹏. 4 K大冷量GM型脉冲管制冷机.  , 2023, 72(19): 190701. doi: 10.7498/aps.72.20230910
    [5] 俎红叶, 程维军, 王亚男, 王晓涛, 李珂, 戴巍. 冷凝泵型稀释制冷机实验研究.  , 2023, 72(8): 080701. doi: 10.7498/aps.72.20222257
    [6] 徐帅, 杨贇贇, 刘行, 何济洲. 基于一维弹道导体的三端纳米线制冷机的性能优化.  , 2022, 71(2): 020501. doi: 10.7498/aps.71.20211077
    [7] 刘行, 徐帅, 高金柱, 何济洲. 基于三个耦合量子点的四端混合驱动制冷机.  , 2022, 71(19): 190502. doi: 10.7498/aps.71.20220904
    [8] 陈浩, 王存海, 程子明, 魏琳扬, 王富强, 张欣欣. 基于辐射制冷-温室效应的热电系统性能分析.  , 2021, 70(21): 214401. doi: 10.7498/aps.70.20210356
    [9] 王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远. 用于亚开温区的极低温绝热去磁制冷机.  , 2021, 70(9): 090702. doi: 10.7498/aps.70.20202237
    [10] 付柏山, 廖奕, 周俊. 稀释制冷机及其中的热交换问题.  , 2021, 70(23): 230202. doi: 10.7498/aps.70.20211760
    [11] 刘国强, 柯亚娇, 张孔斌, 何雄, 罗丰, 何斌, 孙志刚. 全固态磁制冷系统物理模型的研究进展.  , 2019, 68(21): 217501. doi: 10.7498/aps.68.20191139
    [12] 李唯, 符婧, 杨贇贇, 何济洲. 光子驱动量子点制冷机.  , 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [13] 张荣, 卢灿灿, 李倩文, 刘伟, 白龙. 线性不可逆热力学框架下一个无限尺寸热源而有限尺寸冷源的制冷机的性能分析.  , 2018, 67(4): 040502. doi: 10.7498/aps.67.20172010
    [14] 李振兴, 李珂, 沈俊, 戴巍, 高新强, 郭小惠, 公茂琼. 室温磁制冷技术的研究进展.  , 2017, 66(11): 110701. doi: 10.7498/aps.66.110701
    [15] 常松涛, 孙志远, 张尧禹, 朱玮. 制冷型红外成像系统内部杂散辐射测量方法.  , 2015, 64(5): 050702. doi: 10.7498/aps.64.050702
    [16] 何弦, 何济洲, 肖宇玲. 四能级量子制冷循环.  , 2012, 61(15): 150302. doi: 10.7498/aps.61.150302
    [17] 罗小光, 何济洲. 摇摆型棘齿热电子隧穿制冷.  , 2011, 60(9): 090506. doi: 10.7498/aps.60.090506
    [18] 贺兵香, 何济洲, 缪贵玲. 纳米线异质结构对电子制冷机性能的影响.  , 2011, 60(4): 040509. doi: 10.7498/aps.60.040509
    [19] 贺兵香, 何济洲. 双势垒InAs/InP纳米线异质结热电子制冷机.  , 2010, 59(6): 3846-3850. doi: 10.7498/aps.59.3846
    [20] 韩 鹏, 金奎娟, 周岳亮, 周庆莉, 王 旭, 赵嵩卿, 马中水. GaAs/Ga1-xAlxAs半导体量子阱光辐射-热离子制冷.  , 2005, 54(9): 4345-4349. doi: 10.7498/aps.54.4345
计量
  • 文章访问数:  393
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-15
  • 修回日期:  2025-03-15
  • 上网日期:  2025-04-01
  • 刊出日期:  2025-06-05

/

返回文章
返回
Baidu
map