搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LixNi1–xO薄膜物性调控及基于LixNi1–xO的透明pn结整流效应

王磊 周同 华恩达 刘忠良 李兵 刘亲壮

引用本文:
Citation:

LixNi1–xO薄膜物性调控及基于LixNi1–xO的透明pn结整流效应

王磊, 周同, 华恩达, 刘忠良, 李兵, 刘亲壮
cstr: 32037.14.aps.74.20241683

Influence of thickness and doping-dependent properties of Li-doped NiO thin films on rectification effect of pn junction

WANG Lei, ZHOU Tong, HUA Enda, LIU Zhongliang, LI Bing, LIU Qinzhuang
cstr: 32037.14.aps.74.20241683
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 透明导电氧化物(TCO)是光电子学中的关键材料, 与n型TCO相比, 关于p型TCO材料的选择较少, 其中NiO作为典型的p型TCO材料具有研发透明光电子器件的潜力. 本文使用脉冲激光沉积, 在MgO(001)衬底上成功地得到了不同厚度和Li掺杂浓度的LixNi1–xO薄膜. 结果表明, 厚度和Li掺杂的增加都显著地降低了薄膜的电阻率, 并且厚度为50 nm与3%Li掺杂时, 薄膜的带隙最大. 在薄膜厚度与Li掺杂浓度对其物性调控研究的基础上, 选择带隙最大的p型LixNi1–xO与n型La掺杂ASnO3薄膜构造了透明电子器件. I -V测试证实了该透明电子器件的整流特性以及基于透明导电材料pn结的成功构造. 这项工作通过将p型NiO与n型ASnO3集成, 拓展了透明电子器件的研究与潜在应用.
    Transparent conducting oxides (TCOs) are crucial materials in optoelectronics, but p-type TCOs are less studied than n-type TCOs. NiO, for typical p-type TCOs show promising potential applications in transparent optoelectronic devices. In this study, LixNi1–xO thin films with varying thickness and Li doping levels on MgO(001) substrates are successfully fabricated using pulsed laser deposition. The results demonstrate that increasing both thickness and Li doping level will reduce the resistivity of the films, with the maximum optical bandgap observed at a thickness of 50 nm and 3% Li doping level. Based on the control of physical properties through film thickness and Li doping, the p-type LixNi1–xO with the largest bandgap is selected to construct transparent electronic devices with n-type La-doped ASnO3 films. The I -V tests confirm the rectification properties of the heterostructures, successfully demonstrating the formation of pn junctions. This work expands the potential applications of transparent electronic devices by integrating p-type NiO with n-type ASnO3.
      通信作者: 华恩达, huaed@chnu.edu.cn ; 刘亲壮, qzliu@mail.ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974127)、中青年教师培养行动学科(专业)带头人培育项目(批准号: DTR2023022)、安徽省教育厅优秀科研创新团队(批准号: 2024AH010027)、安徽省教育厅科研基金(批准号: 2024AH051674)、淮北师范大学盈余资金拓展研究项目(批准号: 2023ZK052, RE230426, 2023ZK065, 2024ZK09)和安徽省高校协同创新计划(批准号: GXXT-2022-086)资助的课题.
      Corresponding author: HUA Enda, huaed@chnu.edu.cn ; LIU Qinzhuang, qzliu@mail.ustc.edu.cn
    • Funds: Project supported by the Natural Science Foundation of China (Grant No. 11974127), the Middle-aged and Young Teachers’ Training Action Discipline (Major) Leader Cultivation Project, China (Grant No. DTR2023022), the Excellent Scientific Research and Innovation Team of Education Department of Anhui Province, China (Grant No. 2024AH010027), the Scientific Research Foundation of Education Department of Anhui Province of China (Grant No. 2024AH051674), the Surplus Fund Expansion Research Project of Huaibei Normal University, China (Grant Nos. 2023ZK052, RE230426, 2023ZK065, 2024ZK09), and the University Synergy Innovation Program of Anhui Province, China (Grant No. GXXT-2022-086).
    [1]

    Xia H, Luo M, Wang W, Wang H, Li T, Wang Z, Xu H, Chen Y, Zhou Y, Wang F, Xie R, Wang P, Hu W, Lu W 2022 Light-Sci. Appl. 11 170Google Scholar

    [2]

    Mistry B V, Bhatt P, Bhavsar K H, Trivedi S J, Trivedi U N, Joshi U S 2011 Thin Solid Films 519 3840Google Scholar

    [3]

    Zhang J, Han S, Luo W, Xiang S, Zou J, Oropeza F E, Gu M, Zhang K H L 2018 Appl. Phys. Lett. 112 171605Google Scholar

    [4]

    Joshi U S, Matsumoto Y, Itaka K, Sumiya M, Koinuma H 2006 Appl. Surf. Sci. 252 2524Google Scholar

    [5]

    Yang A, Sakata O, Yamauchi R, Katsuya Y, Kumara L S R, Shimada Y, Matsuda A, Yoshimoto M 2014 Appl. Surf. Sci. 320 787Google Scholar

    [6]

    Jang W L, Lu Y M, Hwang W S, Chen W C 2010 J. Eur. Ceram. Soc. 30 503Google Scholar

    [7]

    Garduño-Wilches I, Alonso J C 2013 Int. J. Hydrogen Energy 38 4213Google Scholar

    [8]

    Moulki H, Park D H, Min B K, Kwon H, Hwang S J, Choy J H, Toupance T, Campet G, Rougier A 2012 Electrochim. Acta 74 46Google Scholar

    [9]

    Ohta H, Hirano M, Nakahara K, Maruta H, Tanabe T, Kamiya M, Kamiya T, Hosono H 2003 Appl. Phys. Lett. 83 1029Google Scholar

    [10]

    Zhou T, Yang X M, Yuan J, Liu Q Z 2024 J. Alloys Compd. 984 173953Google Scholar

    [11]

    Sikdar S, Sahu B P, Dhar S 2023 Appl. Phys. Lett. 122 023501Google Scholar

    [12]

    Zhang K H L, Wu R, Tang F, Li W, Oropeza F E, Qiao L, Lazarov V K, Du Y, Payne D J, MacManus-Driscoll J L, Blamire M G 2017 ACS Appl. Mater. Interfaces 9 26549Google Scholar

    [13]

    Dutta T, Gupta P, Gupta A, Narayan J 2010 J. Appl. Phys. 108 083715Google Scholar

    [14]

    Jung M C, Leyden M R, Nikiforov G O, Lee M V, Lee H K, Shin T J, Takimiya K, Qi Y 2015 ACS Appl. Mater. Interfaces 7 1833Google Scholar

    [15]

    Park K H, Ur S C, Kim I H, Choi S M, Seo W S 2010 J. Korean Phys. Soc. 57 1000Google Scholar

    [16]

    Tauc J 1968 Mater. Res. Bull. 3 37Google Scholar

    [17]

    Yang S, Kim J, Choi Y, Kim H, Lee D, Bae J S, Park S 2020 J. Alloys Compd. 815 152343Google Scholar

    [18]

    Li Y, Li X H, Wang Z X, Guo H J, Li T 2016 Ceram. Int. 42 14565Google Scholar

    [19]

    Liu Q Z, Liu J J, Li B, Li H, Zhu G P, Dai K, Liu Z L, Zhang P, Dai J M 2012 Appl. Phys. Lett. 101 241901Google Scholar

    [20]

    Shanthi E, Dutta V, Banerjee A, Chopra K L 1980 J. Appl. Phys. 51 6243Google Scholar

    [21]

    Burstein E 1954 Phys. Rev. 93 632Google Scholar

    [22]

    Moss T S 1954 Proc. Phys. Soc. London, Sect. B 67 775Google Scholar

    [23]

    Dakhel A A 2012 J. Alloys Compd. 539 26Google Scholar

    [24]

    Gupta R K, Ghosh K, Kahol P K 2009 Physica E 41 617Google Scholar

    [25]

    Shah J M, Li Y L, Gessmann T, Schubert E F 2003 J. Appl. Phys. 94 2627Google Scholar

    [26]

    Ohta H, Kamiya M, Kamiya T, Hirano M, Hosono H 2003 Thin Solid Films 445 317Google Scholar

    [27]

    Grundmann M, Klüpfel F, Karsthof R, Schlupp P, Schein F L, Splith D, Yang C, Bitter S, von Wenckstern H 2016 J. Phys. D: Appl. Phys. 49 213001Google Scholar

  • 图 1  厚度对LNO单层膜(x = 0.07)物性的影响 (a)载流子浓度、迁移率和电阻率随厚度的变化; (b)光学透射率与厚度的关系; (c) 与(αhν)2的关系; (d)光学带隙随薄膜厚度的变化

    Fig. 1.  Properties of LNO monolayers (x = 0.07) with varying thicknesses: (a) Variations of carrier concentration, mobility and resistivity of films with different thicknesses; (b) optical transmittance characterization of films with varying thicknesses; (c) plots of vs. (αhν)2; (d) relationship between optical band gap values and film thickness.

    图 2  Li掺杂对LNO单层膜物性的影响 (a) LNO薄膜Ni 2p3/2的XPS; (b) LNO薄膜的载流子浓度、迁移率和电阻率随Li掺杂的变化; (c)薄膜的光学透射率随Li掺杂的变化; (d)光学带隙随Li掺杂的变化

    Fig. 2.  Properties of LNO films with varying Li-doping levels: (a) XPS of LNO films focusing on Ni 2p3/2; (b) relationship of carrier concentration, mobility, and resistivity of LNO films to Li doping levels; (c) optical transmittance characterization of the films; (d) relationship between optical band gap values and Li doping levels.

    图 3  透明异质结的结构表征 (a) LNO/LSSO和LNO/LBSO异质结构的(00l)面的XRD线性扫描; (b) LNO/LSSO异质结构的横截面明场像和(c)各元素分布图像; (d), (e)异质结构的倒易空间衍射图; (f) LSSO和(g) LNO的快速傅里叶变换图案

    Fig. 3.  Structural characterization of heterostructures: (a) XRD (00l) linear scans of LNO/LSSO and LNO/LBSO heterostructures; (b) cross-sectional bright field image and (c) energy dispersive X-ray spectroscopy image of the LNO/LSSO heterostructure; (d), (e) RSM results for heterostructures; (f), (g) FFT patterns of (f) LSSO and (g) LNO.

    图 4  透明异质结构的整流特性 (a) LNO/LSSO (x = 0.03)的I -V曲线, 插图展示了样品的结构示意图; (b) LNO/LBSO (x = 0.03) 的I -V曲线, 插图为测试示意图; (c) LNO/LSSO (x = 0.07)的I -V曲线; (d) LNO/LBSO (x = 0.07)的I -V曲线; (e) LNO/LSSO (x = 0.03)的I -V曲线半对数图; (f) LNO/LBSO (x = 0.03)的I -V曲线半对数图

    Fig. 4.  Rectification characteristics of heterostructures: (a) I -V curve of LNO/LSSO (x = 0.03), with an inset showing the schematic of the heterostructure; (b) I -V curve of LNO/LBSO (x = 0.03), with an inset illustrating the tested sample; (c) I -V curve of LNO/LSSO (x = 0.07); (d) I -V curve of LNO/LBSO (x = 0.07); (e) I -V curve semilogarithmic plot of LNO/LSSO; (f) I -V curve semilogarithmic plot of LNO/LBSO.

    Baidu
  • [1]

    Xia H, Luo M, Wang W, Wang H, Li T, Wang Z, Xu H, Chen Y, Zhou Y, Wang F, Xie R, Wang P, Hu W, Lu W 2022 Light-Sci. Appl. 11 170Google Scholar

    [2]

    Mistry B V, Bhatt P, Bhavsar K H, Trivedi S J, Trivedi U N, Joshi U S 2011 Thin Solid Films 519 3840Google Scholar

    [3]

    Zhang J, Han S, Luo W, Xiang S, Zou J, Oropeza F E, Gu M, Zhang K H L 2018 Appl. Phys. Lett. 112 171605Google Scholar

    [4]

    Joshi U S, Matsumoto Y, Itaka K, Sumiya M, Koinuma H 2006 Appl. Surf. Sci. 252 2524Google Scholar

    [5]

    Yang A, Sakata O, Yamauchi R, Katsuya Y, Kumara L S R, Shimada Y, Matsuda A, Yoshimoto M 2014 Appl. Surf. Sci. 320 787Google Scholar

    [6]

    Jang W L, Lu Y M, Hwang W S, Chen W C 2010 J. Eur. Ceram. Soc. 30 503Google Scholar

    [7]

    Garduño-Wilches I, Alonso J C 2013 Int. J. Hydrogen Energy 38 4213Google Scholar

    [8]

    Moulki H, Park D H, Min B K, Kwon H, Hwang S J, Choy J H, Toupance T, Campet G, Rougier A 2012 Electrochim. Acta 74 46Google Scholar

    [9]

    Ohta H, Hirano M, Nakahara K, Maruta H, Tanabe T, Kamiya M, Kamiya T, Hosono H 2003 Appl. Phys. Lett. 83 1029Google Scholar

    [10]

    Zhou T, Yang X M, Yuan J, Liu Q Z 2024 J. Alloys Compd. 984 173953Google Scholar

    [11]

    Sikdar S, Sahu B P, Dhar S 2023 Appl. Phys. Lett. 122 023501Google Scholar

    [12]

    Zhang K H L, Wu R, Tang F, Li W, Oropeza F E, Qiao L, Lazarov V K, Du Y, Payne D J, MacManus-Driscoll J L, Blamire M G 2017 ACS Appl. Mater. Interfaces 9 26549Google Scholar

    [13]

    Dutta T, Gupta P, Gupta A, Narayan J 2010 J. Appl. Phys. 108 083715Google Scholar

    [14]

    Jung M C, Leyden M R, Nikiforov G O, Lee M V, Lee H K, Shin T J, Takimiya K, Qi Y 2015 ACS Appl. Mater. Interfaces 7 1833Google Scholar

    [15]

    Park K H, Ur S C, Kim I H, Choi S M, Seo W S 2010 J. Korean Phys. Soc. 57 1000Google Scholar

    [16]

    Tauc J 1968 Mater. Res. Bull. 3 37Google Scholar

    [17]

    Yang S, Kim J, Choi Y, Kim H, Lee D, Bae J S, Park S 2020 J. Alloys Compd. 815 152343Google Scholar

    [18]

    Li Y, Li X H, Wang Z X, Guo H J, Li T 2016 Ceram. Int. 42 14565Google Scholar

    [19]

    Liu Q Z, Liu J J, Li B, Li H, Zhu G P, Dai K, Liu Z L, Zhang P, Dai J M 2012 Appl. Phys. Lett. 101 241901Google Scholar

    [20]

    Shanthi E, Dutta V, Banerjee A, Chopra K L 1980 J. Appl. Phys. 51 6243Google Scholar

    [21]

    Burstein E 1954 Phys. Rev. 93 632Google Scholar

    [22]

    Moss T S 1954 Proc. Phys. Soc. London, Sect. B 67 775Google Scholar

    [23]

    Dakhel A A 2012 J. Alloys Compd. 539 26Google Scholar

    [24]

    Gupta R K, Ghosh K, Kahol P K 2009 Physica E 41 617Google Scholar

    [25]

    Shah J M, Li Y L, Gessmann T, Schubert E F 2003 J. Appl. Phys. 94 2627Google Scholar

    [26]

    Ohta H, Kamiya M, Kamiya T, Hirano M, Hosono H 2003 Thin Solid Films 445 317Google Scholar

    [27]

    Grundmann M, Klüpfel F, Karsthof R, Schlupp P, Schein F L, Splith D, Yang C, Bitter S, von Wenckstern H 2016 J. Phys. D: Appl. Phys. 49 213001Google Scholar

  • [1] 万煜炜, 王瑞, 周文权, 王一平, 蔡亚楠, 王常. Ag, Cu掺杂氧化石墨烯吸附NH3的第一性原理研究.  , 2025, 74(7): 073101. doi: 10.7498/aps.74.20241737
    [2] 苗瑞霞, 谢妙春, 程开, 李田甜, 杨小峰, 王业飞, 张德栋. Te掺杂对二维InSe抗氧化性以及电子结构的影响.  , 2023, 72(12): 123101. doi: 10.7498/aps.72.20230004
    [3] 马云鹏, 庄华鹭, 李敬锋, 李千. 应变增强Nb掺杂SrTiO3薄膜热电性能.  , 2023, 72(9): 096803. doi: 10.7498/aps.72.20222301
    [4] 杨健, 高矿红, 李志青. La掺杂BaSnO3薄膜的低温电输运性质.  , 2023, 72(22): 227301. doi: 10.7498/aps.72.20231082
    [5] 敬婧, 李致朋, 卢伟胜, 王宏宇, 杨祖安, 杨毅, 尹祺圣, 杨馥菱, 沈晓明, 曾建民, 詹锋. 一种具有减反射性能的Cu2ZnSnS4太阳能电池透明导电氧化物薄膜.  , 2020, 69(23): 237801. doi: 10.7498/aps.69.20200897
    [6] 王冠仕, 林彦明, 赵亚丽, 姜振益, 张晓东. (Cu,N)共掺杂TiO2/MoS2异质结的电子和光学性能:杂化泛函HSE06.  , 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [7] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质.  , 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [8] 齐俊杰, 徐旻轩, 胡小峰, 张跃. 一维纳米氧化锌自驱动紫外探测器的构建与性能研究.  , 2015, 64(17): 172901. doi: 10.7498/aps.64.172901
    [9] 岱钦, 吴杰, 邬小娇, 乌日娜, 彭增辉, 李大禹. 染料掺杂聚合物分散胆甾相液晶薄膜激光特性研究.  , 2015, 64(1): 016101. doi: 10.7498/aps.64.016101
    [10] 张彬, 王伟丽, 牛巧利, 邹贤劭, 董军, 章勇. H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响.  , 2014, 63(6): 068102. doi: 10.7498/aps.63.068102
    [11] 张丽, 徐明, 余飞, 袁欢, 马涛. Fe, Co共掺杂ZnO薄膜结构及发光特性研究.  , 2013, 62(2): 027501. doi: 10.7498/aps.62.027501
    [12] 杜允, 鲁年鹏, 杨虎, 叶满萍, 李超荣. In掺杂氮化亚铜薄膜的电学、光学和结构特性研究.  , 2013, 62(11): 118104. doi: 10.7498/aps.62.118104
    [13] 薛将, 潘风明, 裴煜. 钽掺杂二氧化钛薄膜的光电性能研究.  , 2013, 62(15): 158103. doi: 10.7498/aps.62.158103
    [14] 吴忠浩, 徐明, 段文倩. Fe掺杂对溶胶凝胶法制备的ZnO: Ni薄膜结构及发光特性的影响.  , 2012, 61(13): 137502. doi: 10.7498/aps.61.137502
    [15] 孙鹏, 杜磊, 何亮, 陈文豪, 刘玉栋, 赵瑛. 基于1/f 噪声变化的pn结二极管辐射效应退化机理研究.  , 2012, 61(12): 127808. doi: 10.7498/aps.61.127808
    [16] 杜丽萍, 陈抱雪, 孙 蓓, 陈 直, 邹林儿, 浜中广见, 矶 守. 掺杂As2S8非晶态薄膜波导的光阻断效应.  , 2008, 57(6): 3593-3599. doi: 10.7498/aps.57.3593
    [17] 廖国进, 闫绍峰, 巴德纯. 铈掺杂氧化铝薄膜的蓝紫色发光特性.  , 2008, 57(11): 7327-7332. doi: 10.7498/aps.57.7327
    [18] 陈新亮, 薛俊明, 张德坤, 孙 建, 任慧志, 赵 颖, 耿新华. 衬底温度对MOCVD法沉积ZnO透明导电薄膜的影响.  , 2007, 56(3): 1563-1567. doi: 10.7498/aps.56.1563
    [19] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究.  , 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [20] 胡晓君, 李荣斌, 沈荷生, 何贤昶, 邓 文, 罗里熊. 掺杂金刚石薄膜的缺陷研究.  , 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
计量
  • 文章访问数:  320
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-05
  • 修回日期:  2025-01-27
  • 上网日期:  2025-02-25

/

返回文章
返回
Baidu
map