-
提出了一种三频段太赫兹双重等离激元诱导透明的单层石墨烯器件, 本器件结构简单且拥有优秀的慢光与传感性能. 器件中的长石墨烯带能够直接被入射光激发, 进而产生一个明模式; 短石墨烯带则无法被入射光直接激发产生暗模式, 但能够被明模式间接激发, 明暗模式相互干涉从而形成表面等离子体诱导透明现象. 本文通过耦合模理论推导此现象产生的机理, 发现计算的结果与时域有限差分法基本一致. 该结构不仅存在外部动态调节的优点, 同时慢光与传感性能也十分优异. 本文发现提高石墨烯器件的费米能级能够显著地提高慢光效应, 群折射率在石墨烯费米能级为1.1 eV时达到最大值327.1. 本结构还拥有优秀的传感性能, 其灵敏度与品质因子最高分别达到1.442 THz/RIU与39.6921. 本研究有望为慢光与传感等领域的应用提供思路与理论基础.A monolayer graphene-based tunable triple-band terahertz plasmon device with superior sensing and slow light performance is proposed in this work. A very obvious dual PIT phenomenon is observed by adjusting the device structure. Then, the transmission curves and electric field distributions of the long- and short-graphene band at the three transmission windows are analyzed, to further investigate the mechanism of the bright mode and the dark mode of this structure. Afterward, the comparison between the theoretical data from the coupled-mode theory (CMT) and the simulation results of finite difference time domain (FDTD) shows that they are in excellent agreement with each other. In addition, the effective refractive indices of the real and imaginary parts at different Fermi energy levels are analyzed. The effective refractive indices are linearly related to the Fermi energy level. In this research, it is found that the phase of the electromagnetic wave fluctuates strongly at the transmission window. With the increase of the Fermi energy level, the peak frequency of the group refractive index peak value increases. When the Fermi energy level is at 1.1 eV, the peak value of the group refractive index reaches 327.1. In order to study the sensing effect of this device in more depth, various refractive indices of the medium are tested. Based on these results it can be seen that the device has excellent sensing performance. Its sensitivity and figure of merit (FOM) reach up to 1.442 THz/RIU and 39.6921, respectively. Compared with the traditional structure, this structure can regulate the Fermi energy levels very conveniently by applying a voltage, in order to modulate the resonant frequency of the dual PIT. The findings in this study are expected to lay a theoretical foundation and provide a design reference for potential applications in fields such as slow light technology and sensing.
-
Keywords:
- micro/nano structures /
- plasmonic /
- slow light /
- sensing
[1] Cavin R K, Lugli P, Zhirnov V V 2012 Proc. IEEE 100 1720
Google Scholar
[2] Lundstrom M 2003 Science 299 210
Google Scholar
[3] Lundstrom M S, Alam M A 2022 Science 378 722
Google Scholar
[4] Powell J R 2008 Proc. IEEE 96 1247
Google Scholar
[5] Shalf J 2020 Phil. Trans. R. Soc. A 378 20190061
Google Scholar
[6] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全 2024 73 157802
Google Scholar
Yang X J, Xu H, Xu H X, Li M, Yu H F, Cheng Y X, Hou H L, Chen Z Q 2024 Acta Phys. Sin. 73 157802
Google Scholar
[7] Yu Y F, Zhang Y, Zhong F, Bai L, Liu H, Lu J P, Ni Z H 2022 Chin. Phys. Lett. 39 058501
Google Scholar
[8] Bai Z Y, Zhang Q, Huang G X 2019 Chin. Opt. Lett. 17 012501
Google Scholar
[9] Pitarke J M, Silkin V M, Chulkov E V, Echenique P M 2006 Rep. Prog. Phys. 70 1
Google Scholar
[10] Liu K J, Li J, Li Q X, Zhu J J 2022 Chin. Phys. B 31 117303
Google Scholar
[11] 徐倩, 陈科, 盛昌建, 王奇, 陈晓行, 刘頔威, 张开春 2019 中国科学: 物理学 力学 天文学 49 064201
Google Scholar
Xu Q, Chen K, Sheng C J, Wang Q, Chen X X, Liu D W, Zhang K C 2019 Sci. China-Phys. Mech. Astron. 49 064201
Google Scholar
[12] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华 2019 68 237301
Google Scholar
Chen Y, Xie J Z, Zhou X D, Zhang C, Yang H, Li S H 2019 Acta Phys. Sin. 68 237301
Google Scholar
[13] Artar A, Yanik A A, Altug H 2011 Nano Lett. 11 1685
Google Scholar
[14] Kekatpure R D, Barnard E S, Cai W S, Brongersma M L 2010 Phys. Rev. Lett. 104 243902
Google Scholar
[15] Zhu Y, Hu X Y, Yang H, Gong Q H 2014 Sci. Rep. 4 3752
Google Scholar
[16] Otsuji T, Tombet S B, Satou A, Fukidome H, Suemitsu M, Sano E, Popov V, Ryzhii M, Ryzhii V 2012 J. Phys. D: Appl. Phys. 45 303001
Google Scholar
[17] Rouhi N, Capdevila S, Jain D, Zand K, Wang Y Y, Brown E, Jofre L, Burke P 2012 Nano Res. 5 667
Google Scholar
[18] Zhou Q G, Qiu Q X, Huang Z M 2023 Opt. Laser Technol. 157 108558
Google Scholar
[19] He Z H, Li L Q, Ma H Q, Pu L H, Xu H, Yi Z, Cao X L, Cui W 2021 Results Phys. 21 103795
Google Scholar
[20] Kumar S B, Guo J 2011 Appl. Phys. Lett. 98 222101
Google Scholar
[21] Santos E J, Kaxiras E 2013 Nano Lett. 13 898
Google Scholar
[22] Lukose V, Shankar R, Baskaran G 2007 Phys. Rev. Lett. 98 116802
Google Scholar
[23] Yan J, Zhang Y B, Kim P, Pinczuk A 2007 Phys. Rev. Lett. 98 166802
Google Scholar
[24] Glazov M, Ganichev S 2014 Phys. Rep. 535 101
Google Scholar
[25] Kim T T, Kim H D, Zhao R K, Oh S S, Ha T, Chung D S, Lee Y H, Min B, Zhang S 2018 ACS Photonics 5 1800
Google Scholar
[26] Yan S Q, Zhu X L, Frandsen L H, Xiao S S, Mortensen N A, Dong J J, Ding Y H 2017 Nat. Commun. 8 14411
Google Scholar
[27] Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C, Wu K 2019 Opt. Express 27 3598
Google Scholar
[28] Xu H Y, Xu H, Yang X J, Li M, Yu H F, Cheng Y X, Zhan S P, Chen Z Q 2024 Phys. Lett. A 504 129401
Google Scholar
[29] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博 2017 66 204101
Google Scholar
Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017 Acta Phys. Sin. 66 204101
Google Scholar
[30] 许辉, 李铭, 杨肖杰, 徐海烨, 陈智全 2024 中国科学: 物理学 力学 天文学 54 234211
Google Scholar
Xu H, Li M, Yang X J, Xu H Y, Chen Z Q 2024 Sci. China-Phys. Mech. Astron 54 234211
Google Scholar
[31] He H R, Peng M Y, Cao G T, Li Y B, Liu H, Yang H 2025 Opt. Laser Technol. 180 111555
Google Scholar
[32] Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884
Google Scholar
[33] Xia S X, Zhai X, Wang L L, Wen S C 2020 Opt. Express 28 7980
Google Scholar
[34] Xiao B G, Tong S J, Fyffe A, Shi Z M 2020 Opt. Express 28 4048
Google Scholar
[35] Xu H, He Z H, Chen Z Q, Nie G Z, Li H J 2020 Opt. Express 28 25767
Google Scholar
[36] Li Y C, Pan Y Z, Chen F, Ke S L, Yang W X 2024 Opt. Quantum Electron. 56 1003
Google Scholar
[37] Yu Y S, Cui Z R, Wen K H, Lü H P, Liu W J, Zhang R L, Liu R M 2024 Phys. Scr. 99 075529
Google Scholar
[38] Wu X X, Chen J N, Wang S L, Ren Y, Yang Y N, He Z H 2024 Nanomaterials 14 997
Google Scholar
[39] Nene P, Strait J H, Chan W M, Manolatou C, Tiwari S, McEuen P L, Rana F 2014 Appl. Phys. Lett. 105 143108
Google Scholar
[40] Li Q, Wang T, Su Y K, Yan M, Qiu M 2010 Opt. Express 18 8367
Google Scholar
[41] Lin H, Xu D, Yang H L, Pantoja M, Garcia S 2014 Chin. Phys. B 23 094203
Google Scholar
[42] 冯越, 刘海, 陈聪, 高鹏, 罗灏, 任紫燕, 乔昱嘉 2022 光子学报 51 0923001
Google Scholar
Feng Y, Liu H, Chen C, Gao P, Luo H, Ren Z Y, Qiao Y J 2022 Acta Photonica Sin. 51 0923001
Google Scholar
[43] Liu J, Khan Z U, Wang C, Zhang H, Sarjoghian S 2020 J. Phys. D 53 233002
Google Scholar
[44] 赵洪霞, 程培红, 丁志群, 王敬蕊, 鲍吉龙 2021 光学学报 41 0728001
Google Scholar
Zhao H X, Cheng P H, Ding Z Q, Wang J X, Bao J L 2021 Acta Opt. Sin. 41 0728001
Google Scholar
[45] Balci S, Balci O, Kakenov N, Atar F B, Kocabas C 2016 Opt. Lett. 41 1241
Google Scholar
[46] Efetov D K, Kim P 2010 Phys. Rev. Lett. 105 256805
Google Scholar
[47] Yang X J, Xu H, Xu H Y, Li M, He L H, Nie G Z, Chen Z Q 2023 J. Phys. D: Appl. Phys. 57 115101
Google Scholar
[48] Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69
Google Scholar
[49] Wang Y X, Cui W, Wang X J, Lei W L, Li L Q, Cao X L, He H, He Z H 2022 Vacuum 206 111515
Google Scholar
[50] 樊元成, 杨振宁, 徐子艺, 张宏, 孙康瑶, 叶哲浩, 张富利, 娄菁 2024 激光与光电子学进展 61 0316003
Google Scholar
Fan Y C, Yang Z N, Xu Z Y, Zhang H, Sun K Y, Ye Z H, Zhang F L, Lou J 2024 Laser Optoelectron. Prog. 61 0316003
Google Scholar
[51] Li M, Xu H, Xu H Y, Yang X J, Yu H F, Cheng Y X, Chen Z Q 2024 Opt. Commun. 554 130175
Google Scholar
[52] Zhang H, Yao P J, Gao E D, Liu C, Li M, Ruan B X, Xu H, Zhang B H, Li H J 2022 J. Opt. Soc. Am. B 39 467
Google Scholar
[53] Xiao B G, Wang Y C, Cai W J, Xiao L H 2022 Opt. Express 30 14985
Google Scholar
[54] Jiang W J, Chen T 2021 Diamond Relat. Mater. 118 108531
Google Scholar
-
图 1 (a)石墨烯结构侧视图; (b)石墨烯结构俯视图, 具体参数为a2 = 2.6 μm, a3 = 0.7 μm, a4 = 0.7 μm, a5 = 0.3 μm, a6 = 0.1 μm, h = 5 μm, h1 = 0.75 μm, h2 = 0.3 μm, l = 0.3 μm
Fig. 1. (a) Side view of graphene structure; (b) top view of the graphene structure, the following parameters: a2 = 2.6 μm, a3 = 0.7 μm, a4 = 0.7 μm, a5 = 0.3 μm, a6 = 0.1 μm, h = 5 μm, h1 = 0.75 μm, h2 = 0.3 μm, l = 0.3 μm.
图 3 (a)双PIT耦合模理论模型的谐振示意图; (b)对应dip1, 3.49 THz共振频率下的电场分布图; (c)对应dip2, 4.85 THz共振频率下的电场分布图; (d)对应dip3, 6.12 THz共振频率下的电场分布图; 其中费米能级为1.0 eV、虚线表示石墨烯带
Fig. 3. (a) Resonant schematic diagram of the dual-PIT coupled mode theory model; (b) for dip1, the electric field distribution at the resonance frequency of 3.49 THz; (c) for dip2, the electric field distribution at the resonance frequency of 4.85 THz; (d) for dip3, the electric field distribution at the resonance frequency of 6.12 THz. The Fermi energy level is 1.0 eV, and the dotted line represents the graphene band.
图 5 (a)—(c)缺少部分石墨烯带后的透射谱图; (d)—(f)石墨烯带之间间隙不同时的透射谱图; (g)—(i)不同尺寸的石墨烯带的透射谱图
Fig. 5. (a)–(c) Transmission spectra in the absence of different part of the graphene bands; (d)–(f) the transmission spectra of graphene bands with different gaps, respectively; (g)–(i) the transmission spectra of graphene bands with different sizes.
图 6 双PIT的模拟与理论透射谱(黑色曲线表示FDTD模拟结果、红点曲线表示耦合理论数值) (a) EF = 0.8 eV; (b) EF = 0.9 eV; (c) EF = 1.0 eV; (d) EF = 1.1 eV
Fig. 6. Simulated and theoretical transmission spectrum of the dual PIT: (a) EF = 0.8 eV; (b) EF = 0.9 eV; (c) EF = 1.0 eV; (d) EF = 1.1 eV. The black curve indicates the FDTD simulated results. The red-dotted curve indicates the coupled theoretical values.
图 7 (a)有效折射率虚部大小; (b)有效折射率实部大小; (c)费米能级与共振频率的线性关系; (d)不同费米能级下的透射谱
Fig. 7. (a) Imaginary part effective refractive index size; (b) real part effective refractive index size; (c) linear plot of Fermi energy levels versus resonance frequency; (d) transmission spectra with different Fermi energy levels.
表 1 三个透射谷的频率差与灵敏度
Table 1. Frequency difference and sensitivity of three transmission valleys
Δf1/
THzΔf2/
THzΔf3/
THzS1/
(THz·RIU–1)S2/
(THz·RIU–1)S3/
(THz·RIU–1)0.0421 0.0960 0.1441 0.421 0.961 1.442 0.0541 0.0961 0.1382 0.541 0.960 1.381 0.0481 0.1021 0.1381 0.480 1.021 1.381 0.0541 0.0961 0.1383 0.541 0.961 1.381 表 2 与其他文献品质因子的比较
Table 2. Comparison of figure of merit with other literature.
-
[1] Cavin R K, Lugli P, Zhirnov V V 2012 Proc. IEEE 100 1720
Google Scholar
[2] Lundstrom M 2003 Science 299 210
Google Scholar
[3] Lundstrom M S, Alam M A 2022 Science 378 722
Google Scholar
[4] Powell J R 2008 Proc. IEEE 96 1247
Google Scholar
[5] Shalf J 2020 Phil. Trans. R. Soc. A 378 20190061
Google Scholar
[6] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全 2024 73 157802
Google Scholar
Yang X J, Xu H, Xu H X, Li M, Yu H F, Cheng Y X, Hou H L, Chen Z Q 2024 Acta Phys. Sin. 73 157802
Google Scholar
[7] Yu Y F, Zhang Y, Zhong F, Bai L, Liu H, Lu J P, Ni Z H 2022 Chin. Phys. Lett. 39 058501
Google Scholar
[8] Bai Z Y, Zhang Q, Huang G X 2019 Chin. Opt. Lett. 17 012501
Google Scholar
[9] Pitarke J M, Silkin V M, Chulkov E V, Echenique P M 2006 Rep. Prog. Phys. 70 1
Google Scholar
[10] Liu K J, Li J, Li Q X, Zhu J J 2022 Chin. Phys. B 31 117303
Google Scholar
[11] 徐倩, 陈科, 盛昌建, 王奇, 陈晓行, 刘頔威, 张开春 2019 中国科学: 物理学 力学 天文学 49 064201
Google Scholar
Xu Q, Chen K, Sheng C J, Wang Q, Chen X X, Liu D W, Zhang K C 2019 Sci. China-Phys. Mech. Astron. 49 064201
Google Scholar
[12] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华 2019 68 237301
Google Scholar
Chen Y, Xie J Z, Zhou X D, Zhang C, Yang H, Li S H 2019 Acta Phys. Sin. 68 237301
Google Scholar
[13] Artar A, Yanik A A, Altug H 2011 Nano Lett. 11 1685
Google Scholar
[14] Kekatpure R D, Barnard E S, Cai W S, Brongersma M L 2010 Phys. Rev. Lett. 104 243902
Google Scholar
[15] Zhu Y, Hu X Y, Yang H, Gong Q H 2014 Sci. Rep. 4 3752
Google Scholar
[16] Otsuji T, Tombet S B, Satou A, Fukidome H, Suemitsu M, Sano E, Popov V, Ryzhii M, Ryzhii V 2012 J. Phys. D: Appl. Phys. 45 303001
Google Scholar
[17] Rouhi N, Capdevila S, Jain D, Zand K, Wang Y Y, Brown E, Jofre L, Burke P 2012 Nano Res. 5 667
Google Scholar
[18] Zhou Q G, Qiu Q X, Huang Z M 2023 Opt. Laser Technol. 157 108558
Google Scholar
[19] He Z H, Li L Q, Ma H Q, Pu L H, Xu H, Yi Z, Cao X L, Cui W 2021 Results Phys. 21 103795
Google Scholar
[20] Kumar S B, Guo J 2011 Appl. Phys. Lett. 98 222101
Google Scholar
[21] Santos E J, Kaxiras E 2013 Nano Lett. 13 898
Google Scholar
[22] Lukose V, Shankar R, Baskaran G 2007 Phys. Rev. Lett. 98 116802
Google Scholar
[23] Yan J, Zhang Y B, Kim P, Pinczuk A 2007 Phys. Rev. Lett. 98 166802
Google Scholar
[24] Glazov M, Ganichev S 2014 Phys. Rep. 535 101
Google Scholar
[25] Kim T T, Kim H D, Zhao R K, Oh S S, Ha T, Chung D S, Lee Y H, Min B, Zhang S 2018 ACS Photonics 5 1800
Google Scholar
[26] Yan S Q, Zhu X L, Frandsen L H, Xiao S S, Mortensen N A, Dong J J, Ding Y H 2017 Nat. Commun. 8 14411
Google Scholar
[27] Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C, Wu K 2019 Opt. Express 27 3598
Google Scholar
[28] Xu H Y, Xu H, Yang X J, Li M, Yu H F, Cheng Y X, Zhan S P, Chen Z Q 2024 Phys. Lett. A 504 129401
Google Scholar
[29] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博 2017 66 204101
Google Scholar
Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017 Acta Phys. Sin. 66 204101
Google Scholar
[30] 许辉, 李铭, 杨肖杰, 徐海烨, 陈智全 2024 中国科学: 物理学 力学 天文学 54 234211
Google Scholar
Xu H, Li M, Yang X J, Xu H Y, Chen Z Q 2024 Sci. China-Phys. Mech. Astron 54 234211
Google Scholar
[31] He H R, Peng M Y, Cao G T, Li Y B, Liu H, Yang H 2025 Opt. Laser Technol. 180 111555
Google Scholar
[32] Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884
Google Scholar
[33] Xia S X, Zhai X, Wang L L, Wen S C 2020 Opt. Express 28 7980
Google Scholar
[34] Xiao B G, Tong S J, Fyffe A, Shi Z M 2020 Opt. Express 28 4048
Google Scholar
[35] Xu H, He Z H, Chen Z Q, Nie G Z, Li H J 2020 Opt. Express 28 25767
Google Scholar
[36] Li Y C, Pan Y Z, Chen F, Ke S L, Yang W X 2024 Opt. Quantum Electron. 56 1003
Google Scholar
[37] Yu Y S, Cui Z R, Wen K H, Lü H P, Liu W J, Zhang R L, Liu R M 2024 Phys. Scr. 99 075529
Google Scholar
[38] Wu X X, Chen J N, Wang S L, Ren Y, Yang Y N, He Z H 2024 Nanomaterials 14 997
Google Scholar
[39] Nene P, Strait J H, Chan W M, Manolatou C, Tiwari S, McEuen P L, Rana F 2014 Appl. Phys. Lett. 105 143108
Google Scholar
[40] Li Q, Wang T, Su Y K, Yan M, Qiu M 2010 Opt. Express 18 8367
Google Scholar
[41] Lin H, Xu D, Yang H L, Pantoja M, Garcia S 2014 Chin. Phys. B 23 094203
Google Scholar
[42] 冯越, 刘海, 陈聪, 高鹏, 罗灏, 任紫燕, 乔昱嘉 2022 光子学报 51 0923001
Google Scholar
Feng Y, Liu H, Chen C, Gao P, Luo H, Ren Z Y, Qiao Y J 2022 Acta Photonica Sin. 51 0923001
Google Scholar
[43] Liu J, Khan Z U, Wang C, Zhang H, Sarjoghian S 2020 J. Phys. D 53 233002
Google Scholar
[44] 赵洪霞, 程培红, 丁志群, 王敬蕊, 鲍吉龙 2021 光学学报 41 0728001
Google Scholar
Zhao H X, Cheng P H, Ding Z Q, Wang J X, Bao J L 2021 Acta Opt. Sin. 41 0728001
Google Scholar
[45] Balci S, Balci O, Kakenov N, Atar F B, Kocabas C 2016 Opt. Lett. 41 1241
Google Scholar
[46] Efetov D K, Kim P 2010 Phys. Rev. Lett. 105 256805
Google Scholar
[47] Yang X J, Xu H, Xu H Y, Li M, He L H, Nie G Z, Chen Z Q 2023 J. Phys. D: Appl. Phys. 57 115101
Google Scholar
[48] Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69
Google Scholar
[49] Wang Y X, Cui W, Wang X J, Lei W L, Li L Q, Cao X L, He H, He Z H 2022 Vacuum 206 111515
Google Scholar
[50] 樊元成, 杨振宁, 徐子艺, 张宏, 孙康瑶, 叶哲浩, 张富利, 娄菁 2024 激光与光电子学进展 61 0316003
Google Scholar
Fan Y C, Yang Z N, Xu Z Y, Zhang H, Sun K Y, Ye Z H, Zhang F L, Lou J 2024 Laser Optoelectron. Prog. 61 0316003
Google Scholar
[51] Li M, Xu H, Xu H Y, Yang X J, Yu H F, Cheng Y X, Chen Z Q 2024 Opt. Commun. 554 130175
Google Scholar
[52] Zhang H, Yao P J, Gao E D, Liu C, Li M, Ruan B X, Xu H, Zhang B H, Li H J 2022 J. Opt. Soc. Am. B 39 467
Google Scholar
[53] Xiao B G, Wang Y C, Cai W J, Xiao L H 2022 Opt. Express 30 14985
Google Scholar
[54] Jiang W J, Chen T 2021 Diamond Relat. Mater. 118 108531
Google Scholar
计量
- 文章访问数: 361
- PDF下载量: 9
- 被引次数: 0