搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯人工微结构的三频段太赫兹传感与慢光

成昱轩 许辉 于鸿飞 黄林琴 谷志超 陈玉峰 贺龙辉 陈智全 侯海良

引用本文:
Citation:

基于石墨烯人工微结构的三频段太赫兹传感与慢光

成昱轩, 许辉, 于鸿飞, 黄林琴, 谷志超, 陈玉峰, 贺龙辉, 陈智全, 侯海良
cstr: 32037.14.aps.74.20241576

Tri-band terahertz sensing and slow light based on graphene artificial microstructure

CHENG Yuxuan, XU Hui, YU Hongfei, HUANG Linqin, GU Zhichao, CHEN Yufeng, HE Longhui, CHEN Zhiquan, HOU Hailiang
cstr: 32037.14.aps.74.20241576
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 提出了一种三频段太赫兹双重等离激元诱导透明的单层石墨烯器件, 本器件结构简单且拥有优秀的慢光与传感性能. 器件中的长石墨烯带能够直接被入射光激发, 进而产生一个明模式; 短石墨烯带则无法被入射光直接激发产生暗模式, 但能够被明模式间接激发, 明暗模式相互干涉从而形成表面等离子体诱导透明现象. 本文通过耦合模理论推导此现象产生的机理, 发现计算的结果与时域有限差分法基本一致. 该结构不仅存在外部动态调节的优点, 同时慢光与传感性能也十分优异. 本文发现提高石墨烯器件的费米能级能够显著地提高慢光效应, 群折射率在石墨烯费米能级为1.1 eV时达到最大值327.1. 本结构还拥有优秀的传感性能, 其灵敏度与品质因子最高分别达到1.442 THz/RIU与39.6921. 本研究有望为慢光与传感等领域的应用提供思路与理论基础.
    A monolayer graphene-based tunable triple-band terahertz plasmon device with superior sensing and slow light performance is proposed in this work. A very obvious dual PIT phenomenon is observed by adjusting the device structure. Then, the transmission curves and electric field distributions of the long- and short-graphene band at the three transmission windows are analyzed, to further investigate the mechanism of the bright mode and the dark mode of this structure. Afterward, the comparison between the theoretical data from the coupled-mode theory (CMT) and the simulation results of finite difference time domain (FDTD) shows that they are in excellent agreement with each other. In addition, the effective refractive indices of the real and imaginary parts at different Fermi energy levels are analyzed. The effective refractive indices are linearly related to the Fermi energy level. In this research, it is found that the phase of the electromagnetic wave fluctuates strongly at the transmission window. With the increase of the Fermi energy level, the peak frequency of the group refractive index peak value increases. When the Fermi energy level is at 1.1 eV, the peak value of the group refractive index reaches 327.1. In order to study the sensing effect of this device in more depth, various refractive indices of the medium are tested. Based on these results it can be seen that the device has excellent sensing performance. Its sensitivity and figure of merit (FOM) reach up to 1.442 THz/RIU and 39.6921, respectively. Compared with the traditional structure, this structure can regulate the Fermi energy levels very conveniently by applying a voltage, in order to modulate the resonant frequency of the dual PIT. The findings in this study are expected to lay a theoretical foundation and provide a design reference for potential applications in fields such as slow light technology and sensing.
      通信作者: 许辉, 1067980351@qq.com ; 侯海良, hhlcj1732@126.com
    • 基金项目: 湘江实验室重点项目(批准号: 23XJ02001)、湖南省自然科学基金(批准号: 2023JJ40218, 2022JJ30201)、长沙市自然科学基金(批准号: kq2202298)和湖南省教育厅资助科研项目(批准号: 21B0574, 21B0556)资助的课题.
      Corresponding author: XU Hui, 1067980351@qq.com ; HOU Hailiang, hhlcj1732@126.com
    • Funds: Project supported by the Key Project of Xiangjiang Laboratory, China (Grant No. 23XJ02001), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2023JJ40218, 2022JJ30201), the Changsha Municipal Natural Science Foundation, China (Grant No. kq2202298), and the Scientific Research Foundation of Education Bureau of Hunan Province, China (Grant Nos. 21B0574, 21B0556).
    [1]

    Cavin R K, Lugli P, Zhirnov V V 2012 Proc. IEEE 100 1720Google Scholar

    [2]

    Lundstrom M 2003 Science 299 210Google Scholar

    [3]

    Lundstrom M S, Alam M A 2022 Science 378 722Google Scholar

    [4]

    Powell J R 2008 Proc. IEEE 96 1247Google Scholar

    [5]

    Shalf J 2020 Phil. Trans. R. Soc. A 378 20190061Google Scholar

    [6]

    杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全 2024 73 157802Google Scholar

    Yang X J, Xu H, Xu H X, Li M, Yu H F, Cheng Y X, Hou H L, Chen Z Q 2024 Acta Phys. Sin. 73 157802Google Scholar

    [7]

    Yu Y F, Zhang Y, Zhong F, Bai L, Liu H, Lu J P, Ni Z H 2022 Chin. Phys. Lett. 39 058501Google Scholar

    [8]

    Bai Z Y, Zhang Q, Huang G X 2019 Chin. Opt. Lett. 17 012501Google Scholar

    [9]

    Pitarke J M, Silkin V M, Chulkov E V, Echenique P M 2006 Rep. Prog. Phys. 70 1Google Scholar

    [10]

    Liu K J, Li J, Li Q X, Zhu J J 2022 Chin. Phys. B 31 117303Google Scholar

    [11]

    徐倩, 陈科, 盛昌建, 王奇, 陈晓行, 刘頔威, 张开春 2019 中国科学: 物理学 力学 天文学 49 064201Google Scholar

    Xu Q, Chen K, Sheng C J, Wang Q, Chen X X, Liu D W, Zhang K C 2019 Sci. China-Phys. Mech. Astron. 49 064201Google Scholar

    [12]

    陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华 2019 68 237301Google Scholar

    Chen Y, Xie J Z, Zhou X D, Zhang C, Yang H, Li S H 2019 Acta Phys. Sin. 68 237301Google Scholar

    [13]

    Artar A, Yanik A A, Altug H 2011 Nano Lett. 11 1685Google Scholar

    [14]

    Kekatpure R D, Barnard E S, Cai W S, Brongersma M L 2010 Phys. Rev. Lett. 104 243902Google Scholar

    [15]

    Zhu Y, Hu X Y, Yang H, Gong Q H 2014 Sci. Rep. 4 3752Google Scholar

    [16]

    Otsuji T, Tombet S B, Satou A, Fukidome H, Suemitsu M, Sano E, Popov V, Ryzhii M, Ryzhii V 2012 J. Phys. D: Appl. Phys. 45 303001Google Scholar

    [17]

    Rouhi N, Capdevila S, Jain D, Zand K, Wang Y Y, Brown E, Jofre L, Burke P 2012 Nano Res. 5 667Google Scholar

    [18]

    Zhou Q G, Qiu Q X, Huang Z M 2023 Opt. Laser Technol. 157 108558Google Scholar

    [19]

    He Z H, Li L Q, Ma H Q, Pu L H, Xu H, Yi Z, Cao X L, Cui W 2021 Results Phys. 21 103795Google Scholar

    [20]

    Kumar S B, Guo J 2011 Appl. Phys. Lett. 98 222101Google Scholar

    [21]

    Santos E J, Kaxiras E 2013 Nano Lett. 13 898Google Scholar

    [22]

    Lukose V, Shankar R, Baskaran G 2007 Phys. Rev. Lett. 98 116802Google Scholar

    [23]

    Yan J, Zhang Y B, Kim P, Pinczuk A 2007 Phys. Rev. Lett. 98 166802Google Scholar

    [24]

    Glazov M, Ganichev S 2014 Phys. Rep. 535 101Google Scholar

    [25]

    Kim T T, Kim H D, Zhao R K, Oh S S, Ha T, Chung D S, Lee Y H, Min B, Zhang S 2018 ACS Photonics 5 1800Google Scholar

    [26]

    Yan S Q, Zhu X L, Frandsen L H, Xiao S S, Mortensen N A, Dong J J, Ding Y H 2017 Nat. Commun. 8 14411Google Scholar

    [27]

    Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C, Wu K 2019 Opt. Express 27 3598Google Scholar

    [28]

    Xu H Y, Xu H, Yang X J, Li M, Yu H F, Cheng Y X, Zhan S P, Chen Z Q 2024 Phys. Lett. A 504 129401Google Scholar

    [29]

    张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博 2017 66 204101Google Scholar

    Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017 Acta Phys. Sin. 66 204101Google Scholar

    [30]

    许辉, 李铭, 杨肖杰, 徐海烨, 陈智全 2024 中国科学: 物理学 力学 天文学 54 234211Google Scholar

    Xu H, Li M, Yang X J, Xu H Y, Chen Z Q 2024 Sci. China-Phys. Mech. Astron 54 234211Google Scholar

    [31]

    He H R, Peng M Y, Cao G T, Li Y B, Liu H, Yang H 2025 Opt. Laser Technol. 180 111555Google Scholar

    [32]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884Google Scholar

    [33]

    Xia S X, Zhai X, Wang L L, Wen S C 2020 Opt. Express 28 7980Google Scholar

    [34]

    Xiao B G, Tong S J, Fyffe A, Shi Z M 2020 Opt. Express 28 4048Google Scholar

    [35]

    Xu H, He Z H, Chen Z Q, Nie G Z, Li H J 2020 Opt. Express 28 25767Google Scholar

    [36]

    Li Y C, Pan Y Z, Chen F, Ke S L, Yang W X 2024 Opt. Quantum Electron. 56 1003Google Scholar

    [37]

    Yu Y S, Cui Z R, Wen K H, Lü H P, Liu W J, Zhang R L, Liu R M 2024 Phys. Scr. 99 075529Google Scholar

    [38]

    Wu X X, Chen J N, Wang S L, Ren Y, Yang Y N, He Z H 2024 Nanomaterials 14 997Google Scholar

    [39]

    Nene P, Strait J H, Chan W M, Manolatou C, Tiwari S, McEuen P L, Rana F 2014 Appl. Phys. Lett. 105 143108Google Scholar

    [40]

    Li Q, Wang T, Su Y K, Yan M, Qiu M 2010 Opt. Express 18 8367Google Scholar

    [41]

    Lin H, Xu D, Yang H L, Pantoja M, Garcia S 2014 Chin. Phys. B 23 094203Google Scholar

    [42]

    冯越, 刘海, 陈聪, 高鹏, 罗灏, 任紫燕, 乔昱嘉 2022 光子学报 51 0923001Google Scholar

    Feng Y, Liu H, Chen C, Gao P, Luo H, Ren Z Y, Qiao Y J 2022 Acta Photonica Sin. 51 0923001Google Scholar

    [43]

    Liu J, Khan Z U, Wang C, Zhang H, Sarjoghian S 2020 J. Phys. D 53 233002Google Scholar

    [44]

    赵洪霞, 程培红, 丁志群, 王敬蕊, 鲍吉龙 2021 光学学报 41 0728001Google Scholar

    Zhao H X, Cheng P H, Ding Z Q, Wang J X, Bao J L 2021 Acta Opt. Sin. 41 0728001Google Scholar

    [45]

    Balci S, Balci O, Kakenov N, Atar F B, Kocabas C 2016 Opt. Lett. 41 1241Google Scholar

    [46]

    Efetov D K, Kim P 2010 Phys. Rev. Lett. 105 256805Google Scholar

    [47]

    Yang X J, Xu H, Xu H Y, Li M, He L H, Nie G Z, Chen Z Q 2023 J. Phys. D: Appl. Phys. 57 115101Google Scholar

    [48]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar

    [49]

    Wang Y X, Cui W, Wang X J, Lei W L, Li L Q, Cao X L, He H, He Z H 2022 Vacuum 206 111515Google Scholar

    [50]

    樊元成, 杨振宁, 徐子艺, 张宏, 孙康瑶, 叶哲浩, 张富利, 娄菁 2024 激光与光电子学进展 61 0316003Google Scholar

    Fan Y C, Yang Z N, Xu Z Y, Zhang H, Sun K Y, Ye Z H, Zhang F L, Lou J 2024 Laser Optoelectron. Prog. 61 0316003Google Scholar

    [51]

    Li M, Xu H, Xu H Y, Yang X J, Yu H F, Cheng Y X, Chen Z Q 2024 Opt. Commun. 554 130175Google Scholar

    [52]

    Zhang H, Yao P J, Gao E D, Liu C, Li M, Ruan B X, Xu H, Zhang B H, Li H J 2022 J. Opt. Soc. Am. B 39 467Google Scholar

    [53]

    Xiao B G, Wang Y C, Cai W J, Xiao L H 2022 Opt. Express 30 14985Google Scholar

    [54]

    Jiang W J, Chen T 2021 Diamond Relat. Mater. 118 108531Google Scholar

  • 图 1  (a)石墨烯结构侧视图; (b)石墨烯结构俯视图, 具体参数为a2 = 2.6 μm, a3 = 0.7 μm, a4 = 0.7 μm, a5 = 0.3 μm, a6 = 0.1 μm, h = 5 μm, h1 = 0.75 μm, h2 = 0.3 μm, l = 0.3 μm

    Fig. 1.  (a) Side view of graphene structure; (b) top view of the graphene structure, the following parameters: a2 = 2.6 μm, a3 = 0.7 μm, a4 = 0.7 μm, a5 = 0.3 μm, a6 = 0.1 μm, h = 5 μm, h1 = 0.75 μm, h2 = 0.3 μm, l = 0.3 μm.

    图 2  双PIT耦合模理论模型

    Fig. 2.  Theoretical coupling diagram between the resonant modes of the proposed structure.

    图 3  (a)双PIT耦合模理论模型的谐振示意图; (b)对应dip1, 3.49 THz共振频率下的电场分布图; (c)对应dip2, 4.85 THz共振频率下的电场分布图; (d)对应dip3, 6.12 THz共振频率下的电场分布图; 其中费米能级为1.0 eV、虚线表示石墨烯带

    Fig. 3.  (a) Resonant schematic diagram of the dual-PIT coupled mode theory model; (b) for dip1, the electric field distribution at the resonance frequency of 3.49 THz; (c) for dip2, the electric field distribution at the resonance frequency of 4.85 THz; (d) for dip3, the electric field distribution at the resonance frequency of 6.12 THz. The Fermi energy level is 1.0 eV, and the dotted line represents the graphene band.

    图 4  (a)—(d)入射光偏振角θ = 0°, 30°, 60°, 90°时的透射谱图

    Fig. 4.  (a)–(d) Transmission spectra at the incident light polarization angle θ = 0°, 30°, 60°, and 90°.

    图 5  (a)—(c)缺少部分石墨烯带后的透射谱图; (d)—(f)石墨烯带之间间隙不同时的透射谱图; (g)—(i)不同尺寸的石墨烯带的透射谱图

    Fig. 5.  (a)–(c) Transmission spectra in the absence of different part of the graphene bands; (d)–(f) the transmission spectra of graphene bands with different gaps, respectively; (g)–(i) the transmission spectra of graphene bands with different sizes.

    图 6  双PIT的模拟与理论透射谱(黑色曲线表示FDTD模拟结果、红点曲线表示耦合理论数值) (a) EF = 0.8 eV; (b) EF = 0.9 eV; (c) EF = 1.0 eV; (d) EF = 1.1 eV

    Fig. 6.  Simulated and theoretical transmission spectrum of the dual PIT: (a) EF = 0.8 eV; (b) EF = 0.9 eV; (c) EF = 1.0 eV; (d) EF = 1.1 eV. The black curve indicates the FDTD simulated results. The red-dotted curve indicates the coupled theoretical values.

    图 7  (a)有效折射率虚部大小; (b)有效折射率实部大小; (c)费米能级与共振频率的线性关系; (d)不同费米能级下的透射谱

    Fig. 7.  (a) Imaginary part effective refractive index size; (b) real part effective refractive index size; (c) linear plot of Fermi energy levels versus resonance frequency; (d) transmission spectra with different Fermi energy levels.

    图 8  费米能级为0.8—1.1 eV时, 群折射率与相位的关系 (a) EF = 0.8 eV; (b) EF = 0.9 eV; (c) EF = 1.0 eV; (d) EF = 1.1 eV

    Fig. 8.  Variation of group refractive index with phase for Fermi energy levels from 0.8 eV to 1.1 eV: (a) EF = 0.8 eV; (b) EF = 0.9 eV; (c) EF = 1.0 eV; (d) EF = 1.1 eV.

    图 9  不同待测介质下的透射谱图

    Fig. 9.  Transmission spectra in different media.

    图 10  本结构在不同介质折射率下的双PIT现象与FOM值 (a) n = 1.1; (b) n = 1.2; (c) n = 1.3; (d) n = 1.4

    Fig. 10.  Dual PIT phenomenon and FOM values of the structure for different media refractive indices: (a) n = 1.1; (b) n = 1.2; (c) n = 1.3; (d) n = 1.4.

    表 1  三个透射谷的频率差与灵敏度

    Table 1.  Frequency difference and sensitivity of three transmission valleys

    Δf1/
    THz
    Δf2/
    THz
    Δf3/
    THz
    S1/
    (THz·RIU–1)
    S2/
    (THz·RIU–1)
    S3/
    (THz·RIU–1)
    0.0421 0.0960 0.1441 0.421 0.961 1.442
    0.0541 0.0961 0.1382 0.541 0.960 1.381
    0.0481 0.1021 0.1381 0.480 1.021 1.381
    0.0541 0.0961 0.1383 0.541 0.961 1.381
    下载: 导出CSV

    表 2  与其他文献品质因子的比较

    Table 2.  Comparison of figure of merit with other literature.

    Our work Ref. [52] Ref. [53] Ref. [19] Ref. [54]
    FOM 39.69 31.09 28.72 23.61 17.28
    下载: 导出CSV
    Baidu
  • [1]

    Cavin R K, Lugli P, Zhirnov V V 2012 Proc. IEEE 100 1720Google Scholar

    [2]

    Lundstrom M 2003 Science 299 210Google Scholar

    [3]

    Lundstrom M S, Alam M A 2022 Science 378 722Google Scholar

    [4]

    Powell J R 2008 Proc. IEEE 96 1247Google Scholar

    [5]

    Shalf J 2020 Phil. Trans. R. Soc. A 378 20190061Google Scholar

    [6]

    杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全 2024 73 157802Google Scholar

    Yang X J, Xu H, Xu H X, Li M, Yu H F, Cheng Y X, Hou H L, Chen Z Q 2024 Acta Phys. Sin. 73 157802Google Scholar

    [7]

    Yu Y F, Zhang Y, Zhong F, Bai L, Liu H, Lu J P, Ni Z H 2022 Chin. Phys. Lett. 39 058501Google Scholar

    [8]

    Bai Z Y, Zhang Q, Huang G X 2019 Chin. Opt. Lett. 17 012501Google Scholar

    [9]

    Pitarke J M, Silkin V M, Chulkov E V, Echenique P M 2006 Rep. Prog. Phys. 70 1Google Scholar

    [10]

    Liu K J, Li J, Li Q X, Zhu J J 2022 Chin. Phys. B 31 117303Google Scholar

    [11]

    徐倩, 陈科, 盛昌建, 王奇, 陈晓行, 刘頔威, 张开春 2019 中国科学: 物理学 力学 天文学 49 064201Google Scholar

    Xu Q, Chen K, Sheng C J, Wang Q, Chen X X, Liu D W, Zhang K C 2019 Sci. China-Phys. Mech. Astron. 49 064201Google Scholar

    [12]

    陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华 2019 68 237301Google Scholar

    Chen Y, Xie J Z, Zhou X D, Zhang C, Yang H, Li S H 2019 Acta Phys. Sin. 68 237301Google Scholar

    [13]

    Artar A, Yanik A A, Altug H 2011 Nano Lett. 11 1685Google Scholar

    [14]

    Kekatpure R D, Barnard E S, Cai W S, Brongersma M L 2010 Phys. Rev. Lett. 104 243902Google Scholar

    [15]

    Zhu Y, Hu X Y, Yang H, Gong Q H 2014 Sci. Rep. 4 3752Google Scholar

    [16]

    Otsuji T, Tombet S B, Satou A, Fukidome H, Suemitsu M, Sano E, Popov V, Ryzhii M, Ryzhii V 2012 J. Phys. D: Appl. Phys. 45 303001Google Scholar

    [17]

    Rouhi N, Capdevila S, Jain D, Zand K, Wang Y Y, Brown E, Jofre L, Burke P 2012 Nano Res. 5 667Google Scholar

    [18]

    Zhou Q G, Qiu Q X, Huang Z M 2023 Opt. Laser Technol. 157 108558Google Scholar

    [19]

    He Z H, Li L Q, Ma H Q, Pu L H, Xu H, Yi Z, Cao X L, Cui W 2021 Results Phys. 21 103795Google Scholar

    [20]

    Kumar S B, Guo J 2011 Appl. Phys. Lett. 98 222101Google Scholar

    [21]

    Santos E J, Kaxiras E 2013 Nano Lett. 13 898Google Scholar

    [22]

    Lukose V, Shankar R, Baskaran G 2007 Phys. Rev. Lett. 98 116802Google Scholar

    [23]

    Yan J, Zhang Y B, Kim P, Pinczuk A 2007 Phys. Rev. Lett. 98 166802Google Scholar

    [24]

    Glazov M, Ganichev S 2014 Phys. Rep. 535 101Google Scholar

    [25]

    Kim T T, Kim H D, Zhao R K, Oh S S, Ha T, Chung D S, Lee Y H, Min B, Zhang S 2018 ACS Photonics 5 1800Google Scholar

    [26]

    Yan S Q, Zhu X L, Frandsen L H, Xiao S S, Mortensen N A, Dong J J, Ding Y H 2017 Nat. Commun. 8 14411Google Scholar

    [27]

    Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C, Wu K 2019 Opt. Express 27 3598Google Scholar

    [28]

    Xu H Y, Xu H, Yang X J, Li M, Yu H F, Cheng Y X, Zhan S P, Chen Z Q 2024 Phys. Lett. A 504 129401Google Scholar

    [29]

    张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博 2017 66 204101Google Scholar

    Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017 Acta Phys. Sin. 66 204101Google Scholar

    [30]

    许辉, 李铭, 杨肖杰, 徐海烨, 陈智全 2024 中国科学: 物理学 力学 天文学 54 234211Google Scholar

    Xu H, Li M, Yang X J, Xu H Y, Chen Z Q 2024 Sci. China-Phys. Mech. Astron 54 234211Google Scholar

    [31]

    He H R, Peng M Y, Cao G T, Li Y B, Liu H, Yang H 2025 Opt. Laser Technol. 180 111555Google Scholar

    [32]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884Google Scholar

    [33]

    Xia S X, Zhai X, Wang L L, Wen S C 2020 Opt. Express 28 7980Google Scholar

    [34]

    Xiao B G, Tong S J, Fyffe A, Shi Z M 2020 Opt. Express 28 4048Google Scholar

    [35]

    Xu H, He Z H, Chen Z Q, Nie G Z, Li H J 2020 Opt. Express 28 25767Google Scholar

    [36]

    Li Y C, Pan Y Z, Chen F, Ke S L, Yang W X 2024 Opt. Quantum Electron. 56 1003Google Scholar

    [37]

    Yu Y S, Cui Z R, Wen K H, Lü H P, Liu W J, Zhang R L, Liu R M 2024 Phys. Scr. 99 075529Google Scholar

    [38]

    Wu X X, Chen J N, Wang S L, Ren Y, Yang Y N, He Z H 2024 Nanomaterials 14 997Google Scholar

    [39]

    Nene P, Strait J H, Chan W M, Manolatou C, Tiwari S, McEuen P L, Rana F 2014 Appl. Phys. Lett. 105 143108Google Scholar

    [40]

    Li Q, Wang T, Su Y K, Yan M, Qiu M 2010 Opt. Express 18 8367Google Scholar

    [41]

    Lin H, Xu D, Yang H L, Pantoja M, Garcia S 2014 Chin. Phys. B 23 094203Google Scholar

    [42]

    冯越, 刘海, 陈聪, 高鹏, 罗灏, 任紫燕, 乔昱嘉 2022 光子学报 51 0923001Google Scholar

    Feng Y, Liu H, Chen C, Gao P, Luo H, Ren Z Y, Qiao Y J 2022 Acta Photonica Sin. 51 0923001Google Scholar

    [43]

    Liu J, Khan Z U, Wang C, Zhang H, Sarjoghian S 2020 J. Phys. D 53 233002Google Scholar

    [44]

    赵洪霞, 程培红, 丁志群, 王敬蕊, 鲍吉龙 2021 光学学报 41 0728001Google Scholar

    Zhao H X, Cheng P H, Ding Z Q, Wang J X, Bao J L 2021 Acta Opt. Sin. 41 0728001Google Scholar

    [45]

    Balci S, Balci O, Kakenov N, Atar F B, Kocabas C 2016 Opt. Lett. 41 1241Google Scholar

    [46]

    Efetov D K, Kim P 2010 Phys. Rev. Lett. 105 256805Google Scholar

    [47]

    Yang X J, Xu H, Xu H Y, Li M, He L H, Nie G Z, Chen Z Q 2023 J. Phys. D: Appl. Phys. 57 115101Google Scholar

    [48]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar

    [49]

    Wang Y X, Cui W, Wang X J, Lei W L, Li L Q, Cao X L, He H, He Z H 2022 Vacuum 206 111515Google Scholar

    [50]

    樊元成, 杨振宁, 徐子艺, 张宏, 孙康瑶, 叶哲浩, 张富利, 娄菁 2024 激光与光电子学进展 61 0316003Google Scholar

    Fan Y C, Yang Z N, Xu Z Y, Zhang H, Sun K Y, Ye Z H, Zhang F L, Lou J 2024 Laser Optoelectron. Prog. 61 0316003Google Scholar

    [51]

    Li M, Xu H, Xu H Y, Yang X J, Yu H F, Cheng Y X, Chen Z Q 2024 Opt. Commun. 554 130175Google Scholar

    [52]

    Zhang H, Yao P J, Gao E D, Liu C, Li M, Ruan B X, Xu H, Zhang B H, Li H J 2022 J. Opt. Soc. Am. B 39 467Google Scholar

    [53]

    Xiao B G, Wang Y C, Cai W J, Xiao L H 2022 Opt. Express 30 14985Google Scholar

    [54]

    Jiang W J, Chen T 2021 Diamond Relat. Mater. 118 108531Google Scholar

  • [1] 侯磊, 关舒阳, 尹俊, 张语军, 肖宜明, 徐文, 丁岚. 谐振腔-单层二硫化钼系统中的高阶腔耦合等离极化激元.  , 2024, 73(22): 227102. doi: 10.7498/aps.73.20241106
    [2] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱.  , 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [3] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用.  , 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [4] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控.  , 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [5] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收.  , 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [6] 李雪健, 曹敏, 汤敏, 芈月安, 陶洪, 古皓, 任文华, 简伟, 任国斌. M型少模光纤中模间受激布里渊散射特性及其温度和应变传感特性.  , 2020, 69(11): 114203. doi: 10.7498/aps.69.20200103
    [7] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究.  , 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [8] 徐飞翔, 李晓光, 张振宇. 量子等离激元光子学在若干方向的最新进展.  , 2019, 68(14): 147103. doi: 10.7498/aps.68.20190331
    [9] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱.  , 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [10] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦.  , 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [11] 尹海峰, 毛力. 一维原子链局域等离激元的非线性激发.  , 2016, 65(8): 087301. doi: 10.7498/aps.65.087301
    [12] 陈华俊, 方贤文, 陈昌兆, 李洋. 基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感.  , 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [13] 尹海峰, 张红, 岳莉. C60富勒烯二聚物的等离激元激发.  , 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [14] 谭姿, 王鹿霞. 异质结线性吸收谱中的等离激元效应.  , 2013, 62(23): 237303. doi: 10.7498/aps.62.237303
    [15] 辛旺, 吴仍来, 薛红杰, 余亚斌. 介观尺寸原子链中的等离激元:紧束缚模型.  , 2013, 62(17): 177301. doi: 10.7498/aps.62.177301
    [16] 魏巍, 张霞, 于辉, 李宇鹏, 张阳安, 黄永清, 陈伟, 罗文勇, 任晓敏. 高非线性微结构光纤中基于受激布里渊散射的慢光延迟.  , 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [17] 郑狄, 潘炜. 非线性光纤环镜在受激布里渊散射慢光级联系统中的可行性研究.  , 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [18] 王楠, 掌蕴东, 王金芳, 田赫, 王号, 张学楠, 张敬, 袁萍. 环中环结构谐振腔中的耦合谐振透明特性研究.  , 2009, 58(11): 7672-7679. doi: 10.7498/aps.58.7672
    [19] 王士鹤, 任立勇, 刘宇. 光纤中基于双宽带抽运的受激布里渊散射增益谱展宽及慢光传输中脉冲失真减小的理论研究.  , 2009, 58(6): 3943-3948. doi: 10.7498/aps.58.3943
    [20] 鲁辉, 田慧平, 李长红, 纪越峰. 基于二维光子晶体耦合腔波导的新型慢光结构研究.  , 2009, 58(3): 2049-2055. doi: 10.7498/aps.58.2049
计量
  • 文章访问数:  361
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-10
  • 修回日期:  2024-12-31
  • 上网日期:  2025-02-09
  • 刊出日期:  2025-03-20

/

返回文章
返回
Baidu
map