搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于准不可压相场理论的精确平衡两相格子Boltzmann方法

李春熠 郭照立

引用本文:
Citation:

基于准不可压相场理论的精确平衡两相格子Boltzmann方法

李春熠, 郭照立
cstr: 32037.14.aps.74.20241513

A well-balanced lattice Boltzmann method based on quasi-incompressible phase-field theory

LI Chunyi, GUO Zhaoli
cstr: 32037.14.aps.74.20241513
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 相比于基于不可压相场的两相格子Boltzmann方程(LBE)模型, 基于准不可压相场理论的LBE模型能够严格保证局部质量守恒. 然而, 以往准不可压相场LBE模型不具有精准平衡性质, 两相界面附近存在虚假速度且界面分布不满足热力学平衡 . 针对这一问题, 本文通过重新设计求解相场方程的平衡态分布函数和源项, 实现了离散尺度的精准平衡, 建立了准不可压相场理论的精准两相LBE模型. 对平界面问题和稳态液滴问题的数值模拟表明, 该模型能消除虚假速度, 具有良好的平衡性能. 对分层泊肃叶流的数值模拟证明了该模型模拟动态问题及大黏度比问题的准确性. 此外还比较了不同表面张力和不同黏度混合规则对模型的影响, 结果表明, 使用$ {\boldsymbol{F}}_{s}=\mu {{\nabla}} \phi $计算表面张力无法消除虚假速度; 模拟动态问题时, 使用阶跃混合规则计算混合黏度可以得到更准确的结果. 最后, 对相分离问题的数值模拟表明, 该模型可以严格保证局部质量守恒.
    Compared with the lattice Boltzmann equation (LBE) model based on incompressible phase field theory, the LBE based on quasi-incompressible phase field theory has the advantage of local mass conservation. However, previous quasi-incompressible phase-field-based LBE model does not satisfy the well-balanced property, resulting in spurious velocities in the vicinity of interface and density profiles inconsistent with those from thermodynamics. To address this problem, a novel LBE model is developed based on the quasi-incompressible phase-field theory. First, numerical artifacts in the original LBE for the Cahn-Hilliard are analyzed. Based on this analysis, the equilibrium distribution function and source term are reformulated to eliminate the numerical artifacts, enabling the new LBE to realize the well-balanced characteristics at a discrete level. The performance of the proposed LBE model is tested by simulating a number of typical two-phase systems. The numerical results of the planar interface and static droplet problems demonstrate that the present model can eliminate spurious velocities and achieve well-balanced state. Numerical results of the layered Poiseuille flow demonstrate the accuracy of the present model in simulating dynamic two-phase flow problems. The well-balanced properties of the LBE model with two different formulations of surface tension ($ {\boldsymbol{F}}_{{\mathrm{s}}}=-\phi {{\nabla}} \mu$ and ${\boldsymbol{F}}_{{\mathrm{s}}}=\mu {{\nabla}} \phi $) are also investigated. It is found that the formulation of $ {\boldsymbol{F}}_{{\mathrm{s}}}=\mu {{\nabla}} \phi $ cannot eliminate the spurious velocities, while the formulation of $ {\boldsymbol{F}}_{{\mathrm{s}}}=\mu {{\nabla}} \phi $ can achieve the well-balanced state. The influences of viscosity formulations of the fluid mixture are also compared. Particularly, four mixing rules are considered. It is shown that the use of step mixing rule gives more accurate results for the layered Poiseuille flow. Finally, we compare the performance of the present quasi-incompressible LBE model with that of the original fully incompressible LBE model by simulating the phase separation problem, and the results show that the present model can ensure the local mass conservation, while the fully incompressible LBE can yield quite different predictions.
      通信作者: 郭照立, zlguo@hust.edu.cn
    • 基金项目: 华中科技大学交叉研究支持计划(批准号: 2023JCYJ002)资助的课题.
      Corresponding author: GUO Zhaoli, zlguo@hust.edu.cn
    • Funds: Project supported by the Interdisciplinary Research Program of HUST, China (Grant No. 2023JCYJ002).
    [1]

    Guo Z L, Shu C 2013 Lattice Boltzmann Method and its Application in Engineering (Vol. 3) (Singapore: World Scientific Publishing

    [2]

    Huang H B, Sukop M, Lu X Y 2015 Multiphase Lattice Boltzmann Methods: Theory and Application (Hoboken, NJ: Wiley-Blackwell

    [3]

    Yang K, Guo Z L 2016 Phys. Rev. E 93 043303Google Scholar

    [4]

    Zhang C H, Guo Z L, Liang H 2021 Int. J. Numer. Methods Fluids 93 2225Google Scholar

    [5]

    Connington K, Lee T 2012 J. Mech. Sci. Technol. 26 3857Google Scholar

    [6]

    Gong J M, Oshima N, Tabe Y 2019 Comput. Math. Appl. 78 1166Google Scholar

    [7]

    Huang H B, Krafczyk M, Lu X Y 2011 Phys. Rev. E 84 046710Google Scholar

    [8]

    Zhai Q L, Zheng L, Zheng S 2017 Phys. Rev. E 95 023313Google Scholar

    [9]

    Siebert D, Philippi P, Mattila K 2014 Phys. Rev. E 90 053310Google Scholar

    [10]

    Cristea A, Sofonea V 2003 Int. J. Mod. Phys. C 14 1251Google Scholar

    [11]

    Wagner A J 2003 Int. J. Mod. Phys. B 17 193Google Scholar

    [12]

    Shan X 2006 Phys. Rev. E 73 047701Google Scholar

    [13]

    Sbragaglia M, Benzi R, Biferale L, Succi S, Sugiyama K, Toschi F 2007 Phys. Rev. E 75 026702Google Scholar

    [14]

    Guo Z L, Zheng C G, Shi B C 2011 Phys. Rev. E 83 036707Google Scholar

    [15]

    Guo Z L 2021 Phys. Fluids 33 031709Google Scholar

    [16]

    Zhang C H, Guo Z L, Wang L P 2022 Phys. Fluids 34 012110Google Scholar

    [17]

    Zheng L, Zheng S, Zhai Q L 2021 Phys. Fluids 33 092102Google Scholar

    [18]

    Ju L, Liu P Y, Yan B C, Bao J, Sun S Y, Guo Z L 2023 arXiv: 2311.10827v1 [physics. flu-dyn]

    [19]

    Lowengrub J, Truskinovsky L 1998 Proc. R. Soc. London, Ser. A 454 2617Google Scholar

    [20]

    Shen J, Yang X F, Wang Q 2013 Commun. Comput. Phys. 13 1045Google Scholar

    [21]

    Jacqmin D 1999 Commun. Comput. Phys. 155 96Google Scholar

    [22]

    Deng B, Shi B C, Wang G C 2005 Chin. Phys. Lett. 22 267Google Scholar

  • 图 1  本文WB-LBE模型与YG-LBE模型模拟平界面问题的结果 (a)总动能随时间的演化过程; (b)稳态时WB-LBE计算的流动速度分布; (c)稳态时YG-LBE模型计算的流动速度分布; (d)化学势分布

    Fig. 1.  Numerical results of the WB-LBE and YG-LBE models for the planar interface: (a) Time evolution of the total kinetic energy; (b) distribution of velocity obtained by the WB-LBE model at steady state; (c) distribution of velocity obtained by the YG-LBE model at steady state; (d) distributions of chemical potential.

    图 2  本文WB-LBE模型与YG-LBE模型模拟稳态液滴问题的结果 (a)总动能随时间的演化过程; (b)稳态时WB-LBE计算的流动速度分布; (c)稳态时YG-LBE计算的流动速度分布; (d)化学势分布

    Fig. 2.  Results of the WB-LBE and YG-LBE models for the steady-state droplet problem: (a) Time evolution of the total kinetic energy; (b) velocity distribution obtained by the WB-LBE model; (c) velocity distribution obtained by the YG-LBE model; (d) distributions of chemical potential.

    图 3  使用不同表面张力形式时稳态液滴问题的计算结果 (a)总动能随时间的演化过程; (b)化学势分布

    Fig. 3.  Numerical results of the steady-state droplet problem using different forms of surface tension: (a) Time evolution of the total kinetic energy; (b) distributions of chemical potential.

    图 4  使用不同黏度混合规则时稳态液滴的计算结果 (a)序参数分布; (b)化学势分布; (c), (d)总动能随时间的演化过程

    Fig. 4.  Numerical results of the steady-state droplet problem using different viscosity mixing rules: (a) Distributions of order parameter; (b) distributions of chemical potential; (c), (d) time evolution of total kinetic energy.

    图 5  使用不同黏度混合规则时分层泊肃叶流的速度分布

    Fig. 5.  Distributions of flow velocity of the layered Poiseuille flow with different viscosity mixing rules.

    图 6  不同动力黏度比时分层泊肃叶流速度分布 (a) $ M=10 $; (b) $ M=100 $; (c) $ M=1000 $.

    Fig. 6.  Distributions of flow velocity of the layered Poiseuille flow with different dynamic viscosity ratios: (a) $ M=10 $; (b) $ M=100 $; (c) $ M=1000 $.

    图 7  不可压模型和准不可压模型计算的两相分布(黄色, 流体1; 蓝色, 流体2)

    Fig. 7.  Phase distributions predicted by the incompressible model and the quasi-incompressible model. Yellow, Fluid 1; Blue, Fluid 2

    图 8  单相质量随时间的变化

    Fig. 8.  Variation of single-phase mass over time.

    Baidu
  • [1]

    Guo Z L, Shu C 2013 Lattice Boltzmann Method and its Application in Engineering (Vol. 3) (Singapore: World Scientific Publishing

    [2]

    Huang H B, Sukop M, Lu X Y 2015 Multiphase Lattice Boltzmann Methods: Theory and Application (Hoboken, NJ: Wiley-Blackwell

    [3]

    Yang K, Guo Z L 2016 Phys. Rev. E 93 043303Google Scholar

    [4]

    Zhang C H, Guo Z L, Liang H 2021 Int. J. Numer. Methods Fluids 93 2225Google Scholar

    [5]

    Connington K, Lee T 2012 J. Mech. Sci. Technol. 26 3857Google Scholar

    [6]

    Gong J M, Oshima N, Tabe Y 2019 Comput. Math. Appl. 78 1166Google Scholar

    [7]

    Huang H B, Krafczyk M, Lu X Y 2011 Phys. Rev. E 84 046710Google Scholar

    [8]

    Zhai Q L, Zheng L, Zheng S 2017 Phys. Rev. E 95 023313Google Scholar

    [9]

    Siebert D, Philippi P, Mattila K 2014 Phys. Rev. E 90 053310Google Scholar

    [10]

    Cristea A, Sofonea V 2003 Int. J. Mod. Phys. C 14 1251Google Scholar

    [11]

    Wagner A J 2003 Int. J. Mod. Phys. B 17 193Google Scholar

    [12]

    Shan X 2006 Phys. Rev. E 73 047701Google Scholar

    [13]

    Sbragaglia M, Benzi R, Biferale L, Succi S, Sugiyama K, Toschi F 2007 Phys. Rev. E 75 026702Google Scholar

    [14]

    Guo Z L, Zheng C G, Shi B C 2011 Phys. Rev. E 83 036707Google Scholar

    [15]

    Guo Z L 2021 Phys. Fluids 33 031709Google Scholar

    [16]

    Zhang C H, Guo Z L, Wang L P 2022 Phys. Fluids 34 012110Google Scholar

    [17]

    Zheng L, Zheng S, Zhai Q L 2021 Phys. Fluids 33 092102Google Scholar

    [18]

    Ju L, Liu P Y, Yan B C, Bao J, Sun S Y, Guo Z L 2023 arXiv: 2311.10827v1 [physics. flu-dyn]

    [19]

    Lowengrub J, Truskinovsky L 1998 Proc. R. Soc. London, Ser. A 454 2617Google Scholar

    [20]

    Shen J, Yang X F, Wang Q 2013 Commun. Comput. Phys. 13 1045Google Scholar

    [21]

    Jacqmin D 1999 Commun. Comput. Phys. 155 96Google Scholar

    [22]

    Deng B, Shi B C, Wang G C 2005 Chin. Phys. Lett. 22 267Google Scholar

  • [1] 赖瑶瑶, 陈鑫梦, 柴振华, 施保昌. 基于格子Boltzmann方法的钉扎螺旋波反馈控制.  , 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [2] 陈百慧, 施保昌, 汪垒, 柴振华. 基于GPU的二维梯形空腔流的格子Boltzmann模拟与分析.  , 2023, 72(15): 154701. doi: 10.7498/aps.72.20230430
    [3] 刘程, 梁宏. 三相流体的轴对称格子 Boltzmann 模型及其在 Rayleigh-Plateau 不稳定性的应用.  , 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [4] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟.  , 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [5] 胡嘉懿, 张文欢, 柴振华, 施保昌, 汪一航. 三维不可压缩流的12速多松弛格子Boltzmann模型.  , 2019, 68(23): 234701. doi: 10.7498/aps.68.20190984
    [6] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型.  , 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [7] 张鹏, 洪延姬, 丁小雨, 沈双晏, 冯喜平. 等离子体对含硼两相流扩散燃烧特性的影响.  , 2015, 64(20): 205203. doi: 10.7498/aps.64.205203
    [8] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟.  , 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [9] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究.  , 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [10] 陶实, 王亮, 郭照立. 微尺度振荡Couette流的格子Boltzmann模拟.  , 2014, 63(21): 214703. doi: 10.7498/aps.63.214703
    [11] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法.  , 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [12] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟.  , 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [13] 高忠科, 胡沥丹, 周婷婷, 金宁德. 两相流有限穿越可视图演化动力学研究.  , 2013, 62(11): 110507. doi: 10.7498/aps.62.110507
    [14] 赵俊英, 金宁德. 两相流相空间多元图重心轨迹动力学特征.  , 2012, 61(9): 094701. doi: 10.7498/aps.61.094701
    [15] 苏进, 欧阳洁, 王晓东. 耦合不可压流场输运方程的格子Boltzmann方法研究.  , 2012, 61(10): 104702. doi: 10.7498/aps.61.104702
    [16] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用.  , 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [17] 陈高飞, 公茂琼, 沈俊, 邹鑫, 吴剑峰. 水平管内二氟乙烷两相流动摩擦压降实验研究.  , 2010, 59(12): 8669-8675. doi: 10.7498/aps.59.8669
    [18] 董 芳, 金宁德, 宗艳波, 王振亚. 两相流流型动力学特征多尺度递归定量分析.  , 2008, 57(10): 6145-6154. doi: 10.7498/aps.57.6145
    [19] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程.  , 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
    [20] 吕晓阳, 李华兵. 用格子Boltzmann方法模拟高雷诺数下的热空腔黏性流.  , 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
计量
  • 文章访问数:  515
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-29
  • 修回日期:  2025-01-15
  • 上网日期:  2025-01-23
  • 刊出日期:  2025-03-20

/

返回文章
返回
Baidu
map