搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水平管内二氟乙烷两相流动摩擦压降实验研究

陈高飞 公茂琼 沈俊 邹鑫 吴剑峰

引用本文:
Citation:

水平管内二氟乙烷两相流动摩擦压降实验研究

陈高飞, 公茂琼, 沈俊, 邹鑫, 吴剑峰

Two-phase frictional pressure drop of 1,1-difluoroethane in a horizontal tube

Chen Gao-Fei, Gong Mao-Qiong, Shen Jun, Zou Xin, Wu Jian-Feng
PDF
导出引用
  • 对制冷剂二氟乙烷(HFC-152a)在内径为8 mm的水平管内进行了两相流动沸腾摩擦压降的实验测量.实验测量的压力范围为0.19—0.41 MPa,热流密度范围为14—62 kW/m2,流量范围为128—200 kg/m2s.实验测量表明:HFC-152a的两相摩擦压降随质量流量、质量含气率的增大而增大;热流密度则对摩擦压降的直接影响很小,但通过影响两相流流型间接影响了摩擦压降;当流型由分层流动转变为半环状流或环状流时,总压降中加速压降所占比例有所减小,而摩擦压降所占比例则有所增大;摩擦压降随饱和压力的增大而减小.使用两个应用广泛的压降计算式进行了计算.实验测试结果与计算结果对比后发现,Friedel模型与实验结果偏差较大,而Müller-Steinhagen-Heck模型则与实验结果符合较好.
    This paper deals with an experimental investigation of two-phase frictional pressure drop behavior of 1,1-difluoroethane in an 8 mm inside-diameter smooth horizontal tube. Pressure drop characteristics are measured in a pressure range of 0.19—0.41 MPa, heat flux range of 14—62 kW/m2, and mass flux range of 128—200 kg/m2s. The effects of experimental parameters on pressure drop are analyzed. It is found that with the increases of mass flow and vapor quality, the frictional pressure drop increases. The proportion of momentum pressure drop in the total pressure drop increases slightly as heat flux increases, and accordingly the proportion of the frictional pressure drop decreases. The frictional pressure drop increases with saturation pressure decreasing. Experimental results are compared with the calculations from the two extensively used correlation formulae. Our investigations show that the Friedel model has a relatively large deviation, and the Müller-Steinhagen-Heck model accords well with the experimental results.
    • 基金项目: 国家自然科学基金重点项目(批准号:50890183 )资助的课题.
    [1]

    Jin N D, Zheng G B 2009 Acta Phys. Sin. 58 4485 (in Chinese) [金宁德、郑桂波 2009 58 4485]

    [2]

    Dong F, Jin N D, Zong Y B, Wang Z Y 2008 Acta Phys. Sin. 57 6145 (in Chinese) [董 芳、金宁德、宗艳波、王振亚 2008 57 6145]

    [3]

    Tillnerroth R 1995 Int. J. Thermophys. 16 91

    [4]

    Hozumi T, Koga T, Sato H, Watanabe K 1993 Int. J. Thermophys. 14 739

    [5]

    Jung D S, Radermacher R 1989 Int. J. Heat Mass Transfer 32 2435

    [6]

    Revellin R, Haberschill P 2009 Int. J. Refrig. 32 487

    [7]

    Shannak B A 2008 Nucl. Eng. Des. 238 3277

    [8]

    Lockhart R W, Martinelli R C 1949 Chem. Eng. Prog. 45 39

    [9]

    Friedel L 1979 European Two-Phase Flow Group Meeting (Ispra: ETPFG) E2

    [10]

    Chisholm D 1973 Int. J. Heat Mass Transfer 16 347

    [11]

    Bankoff S G 1960 J. Heat Transfer 11 265

    [12]

    Chawla J M 1967 ASHRAE J. 4 52

    [13]

    Müller-Steinhagen H, Heck K 1986 Chem. Eng. Process 20 297

    [14]

    Tribbe C, Müller-Steinhagen H 2000 Int. J. Multiphase Flow 26 1019

    [15]

    Didi M B O, Kattan N, Thome J R 2002 Int. J. Refrig. 25 935

    [16]

    Zou X, Gong M Q, Chen G F, Sun Z H, Zhang Y, Wu J F 2010 Int. J. Refrig. 33 371

    [17]

    Lin Z H, Wang S Z, Wang D 2003 Gas-Liquid Two Phase Flow and Boiling Heat Transfer (Xian: Xian Jiaotong University Press) p101 (in Chinese) [林宗虎、王树众、王 栋 2003 气液两相流和沸腾换热(西安:西安交通大学出版社)第101页]

    [18]

    Steiner D 1993 VDI-Wrmeatlas (Düsseldorf: Springer) p375

    [19]

    Rouhani S Z, Axelsson E 1970 Int. J. Heat Mass Transfer 13 383

    [20]

    Lemmon E W, Huber M L, McLinden M O 2007 Standard Reference Database 23 (Version 8.0) (Boulder: National Institute of Standards and Technology)

    [21]

    Taylor B N, Kuyatt C E 1994 Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (Boulder: National Institute of Standards and Technology)

    [22]

    Moreno Q J, Thome J R 2007 Int. J. Heat Fluid Flow 28 1049

    [23]

    Moreno Q J, Thome J R 2007 Int. J. Heat Fluid Flow 28 1060

  • [1]

    Jin N D, Zheng G B 2009 Acta Phys. Sin. 58 4485 (in Chinese) [金宁德、郑桂波 2009 58 4485]

    [2]

    Dong F, Jin N D, Zong Y B, Wang Z Y 2008 Acta Phys. Sin. 57 6145 (in Chinese) [董 芳、金宁德、宗艳波、王振亚 2008 57 6145]

    [3]

    Tillnerroth R 1995 Int. J. Thermophys. 16 91

    [4]

    Hozumi T, Koga T, Sato H, Watanabe K 1993 Int. J. Thermophys. 14 739

    [5]

    Jung D S, Radermacher R 1989 Int. J. Heat Mass Transfer 32 2435

    [6]

    Revellin R, Haberschill P 2009 Int. J. Refrig. 32 487

    [7]

    Shannak B A 2008 Nucl. Eng. Des. 238 3277

    [8]

    Lockhart R W, Martinelli R C 1949 Chem. Eng. Prog. 45 39

    [9]

    Friedel L 1979 European Two-Phase Flow Group Meeting (Ispra: ETPFG) E2

    [10]

    Chisholm D 1973 Int. J. Heat Mass Transfer 16 347

    [11]

    Bankoff S G 1960 J. Heat Transfer 11 265

    [12]

    Chawla J M 1967 ASHRAE J. 4 52

    [13]

    Müller-Steinhagen H, Heck K 1986 Chem. Eng. Process 20 297

    [14]

    Tribbe C, Müller-Steinhagen H 2000 Int. J. Multiphase Flow 26 1019

    [15]

    Didi M B O, Kattan N, Thome J R 2002 Int. J. Refrig. 25 935

    [16]

    Zou X, Gong M Q, Chen G F, Sun Z H, Zhang Y, Wu J F 2010 Int. J. Refrig. 33 371

    [17]

    Lin Z H, Wang S Z, Wang D 2003 Gas-Liquid Two Phase Flow and Boiling Heat Transfer (Xian: Xian Jiaotong University Press) p101 (in Chinese) [林宗虎、王树众、王 栋 2003 气液两相流和沸腾换热(西安:西安交通大学出版社)第101页]

    [18]

    Steiner D 1993 VDI-Wrmeatlas (Düsseldorf: Springer) p375

    [19]

    Rouhani S Z, Axelsson E 1970 Int. J. Heat Mass Transfer 13 383

    [20]

    Lemmon E W, Huber M L, McLinden M O 2007 Standard Reference Database 23 (Version 8.0) (Boulder: National Institute of Standards and Technology)

    [21]

    Taylor B N, Kuyatt C E 1994 Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (Boulder: National Institute of Standards and Technology)

    [22]

    Moreno Q J, Thome J R 2007 Int. J. Heat Fluid Flow 28 1049

    [23]

    Moreno Q J, Thome J R 2007 Int. J. Heat Fluid Flow 28 1060

  • [1] 彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦. 激波冲击作用下液膜破碎的气液两相流.  , 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [2] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析.  , 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [3] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型.  , 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [4] 陈平, 杜亚威, 薛友林. 垂直气液两相流混沌吸引子单元面积分析.  , 2016, 65(3): 034701. doi: 10.7498/aps.65.034701
    [5] 翟路生, 金宁德. 小管径气液两相流空隙率波传播的多尺度相关性.  , 2016, 65(1): 010501. doi: 10.7498/aps.65.010501
    [6] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟.  , 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [7] 张鹏, 洪延姬, 丁小雨, 沈双晏, 冯喜平. 等离子体对含硼两相流扩散燃烧特性的影响.  , 2015, 64(20): 205203. doi: 10.7498/aps.64.205203
    [8] 韩庆邦, 徐杉, 谢祖峰, 葛蕤, 王茜, 赵胜永, 朱昌平. Scholte波与含泥沙两相流介质属性关系的分析及仿真验证.  , 2013, 62(19): 194301. doi: 10.7498/aps.62.194301
    [9] 李洪伟, 周云龙, 王世勇, 孙斌. 小通道氮气-水两相流三谱切片波动特性及其流型表征.  , 2013, 62(14): 140505. doi: 10.7498/aps.62.140505
    [10] 高忠科, 胡沥丹, 周婷婷, 金宁德. 两相流有限穿越可视图演化动力学研究.  , 2013, 62(11): 110507. doi: 10.7498/aps.62.110507
    [11] 危卫, 鲁录义, 顾兆林. 风沙运动的电场-流场耦合模型及气固两相流数值模拟.  , 2012, 61(15): 158301. doi: 10.7498/aps.61.158301
    [12] 计时鸣, 翁晓星, 谭大鹏. 基于水平集方法二维模型的软性磨粒两相流流场特性分析方法.  , 2012, 61(1): 010205. doi: 10.7498/aps.61.010205
    [13] 王裴, 孙海权, 邵建立, 秦承森, 李欣竹. 微喷颗粒与气体混合过程的数值模拟研究.  , 2012, 61(23): 234703. doi: 10.7498/aps.61.234703
    [14] 刘丹阳, 王亚伟, 王仙, 何昆, 张兴娟, 杨春信. 氧相变换热器内压力波动的混沌特性分析.  , 2012, 61(15): 150506. doi: 10.7498/aps.61.150506
    [15] 赵俊英, 金宁德. 两相流相空间多元图重心轨迹动力学特征.  , 2012, 61(9): 094701. doi: 10.7498/aps.61.094701
    [16] 孙斌, 王二朋, 郑永军. 气液两相流波动信号的时频谱分析研究.  , 2011, 60(1): 014701. doi: 10.7498/aps.60.014701
    [17] 赵建华, 张强. 沙尘大气物理约束方程研究.  , 2010, 59(12): 8954-8967. doi: 10.7498/aps.59.8954
    [18] 董 芳, 金宁德, 宗艳波, 王振亚. 两相流流型动力学特征多尺度递归定量分析.  , 2008, 57(10): 6145-6154. doi: 10.7498/aps.57.6145
    [19] 王 飞, 何 枫. 微管道内两相流数值算法及在电浸润液滴控制中的应用.  , 2006, 55(3): 1005-1010. doi: 10.7498/aps.55.1005
    [20] 宋岩, 丁鄂江, 黄祖洽. 混合流体浸润相变的研究(Ⅰ)——二元系统的两相共存态.  , 1991, 40(9): 1492-1500. doi: 10.7498/aps.40.1492
计量
  • 文章访问数:  8359
  • PDF下载量:  799
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-12
  • 修回日期:  2010-08-11
  • 刊出日期:  2010-06-05

/

返回文章
返回
Baidu
map