-
对制冷剂二氟乙烷(HFC-152a)在内径为8 mm的水平管内进行了两相流动沸腾摩擦压降的实验测量.实验测量的压力范围为0.19—0.41 MPa,热流密度范围为14—62 kW/m2,流量范围为128—200 kg/m2s.实验测量表明:HFC-152a的两相摩擦压降随质量流量、质量含气率的增大而增大;热流密度则对摩擦压降的直接影响很小,但通过影响两相流流型间接影响了摩擦压降;当流型由分层流动转变为半环状流或环状流时,总压降中加速压降所占比例有所减小,而摩擦压降所占比例则有所增大;摩擦压降随饱和压力的增大而减小.使用两个应用广泛的压降计算式进行了计算.实验测试结果与计算结果对比后发现,Friedel模型与实验结果偏差较大,而Müller-Steinhagen-Heck模型则与实验结果符合较好.This paper deals with an experimental investigation of two-phase frictional pressure drop behavior of 1,1-difluoroethane in an 8 mm inside-diameter smooth horizontal tube. Pressure drop characteristics are measured in a pressure range of 0.19—0.41 MPa, heat flux range of 14—62 kW/m2, and mass flux range of 128—200 kg/m2s. The effects of experimental parameters on pressure drop are analyzed. It is found that with the increases of mass flow and vapor quality, the frictional pressure drop increases. The proportion of momentum pressure drop in the total pressure drop increases slightly as heat flux increases, and accordingly the proportion of the frictional pressure drop decreases. The frictional pressure drop increases with saturation pressure decreasing. Experimental results are compared with the calculations from the two extensively used correlation formulae. Our investigations show that the Friedel model has a relatively large deviation, and the Müller-Steinhagen-Heck model accords well with the experimental results.
-
Keywords:
- two-phase flow /
- frictional pressure drop /
- 1 /
- 1-difluoroethane
[1] Jin N D, Zheng G B 2009 Acta Phys. Sin. 58 4485 (in Chinese) [金宁德、郑桂波 2009 58 4485]
[2] Dong F, Jin N D, Zong Y B, Wang Z Y 2008 Acta Phys. Sin. 57 6145 (in Chinese) [董 芳、金宁德、宗艳波、王振亚 2008 57 6145]
[3] Tillnerroth R 1995 Int. J. Thermophys. 16 91
[4] Hozumi T, Koga T, Sato H, Watanabe K 1993 Int. J. Thermophys. 14 739
[5] Jung D S, Radermacher R 1989 Int. J. Heat Mass Transfer 32 2435
[6] Revellin R, Haberschill P 2009 Int. J. Refrig. 32 487
[7] Shannak B A 2008 Nucl. Eng. Des. 238 3277
[8] Lockhart R W, Martinelli R C 1949 Chem. Eng. Prog. 45 39
[9] Friedel L 1979 European Two-Phase Flow Group Meeting (Ispra: ETPFG) E2
[10] Chisholm D 1973 Int. J. Heat Mass Transfer 16 347
[11] Bankoff S G 1960 J. Heat Transfer 11 265
[12] Chawla J M 1967 ASHRAE J. 4 52
[13] Müller-Steinhagen H, Heck K 1986 Chem. Eng. Process 20 297
[14] Tribbe C, Müller-Steinhagen H 2000 Int. J. Multiphase Flow 26 1019
[15] Didi M B O, Kattan N, Thome J R 2002 Int. J. Refrig. 25 935
[16] Zou X, Gong M Q, Chen G F, Sun Z H, Zhang Y, Wu J F 2010 Int. J. Refrig. 33 371
[17] Lin Z H, Wang S Z, Wang D 2003 Gas-Liquid Two Phase Flow and Boiling Heat Transfer (Xian: Xian Jiaotong University Press) p101 (in Chinese) [林宗虎、王树众、王 栋 2003 气液两相流和沸腾换热(西安:西安交通大学出版社)第101页]
[18] Steiner D 1993 VDI-Wrmeatlas (Düsseldorf: Springer) p375
[19] Rouhani S Z, Axelsson E 1970 Int. J. Heat Mass Transfer 13 383
[20] Lemmon E W, Huber M L, McLinden M O 2007 Standard Reference Database 23 (Version 8.0) (Boulder: National Institute of Standards and Technology)
[21] Taylor B N, Kuyatt C E 1994 Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (Boulder: National Institute of Standards and Technology)
[22] Moreno Q J, Thome J R 2007 Int. J. Heat Fluid Flow 28 1049
[23] Moreno Q J, Thome J R 2007 Int. J. Heat Fluid Flow 28 1060
-
[1] Jin N D, Zheng G B 2009 Acta Phys. Sin. 58 4485 (in Chinese) [金宁德、郑桂波 2009 58 4485]
[2] Dong F, Jin N D, Zong Y B, Wang Z Y 2008 Acta Phys. Sin. 57 6145 (in Chinese) [董 芳、金宁德、宗艳波、王振亚 2008 57 6145]
[3] Tillnerroth R 1995 Int. J. Thermophys. 16 91
[4] Hozumi T, Koga T, Sato H, Watanabe K 1993 Int. J. Thermophys. 14 739
[5] Jung D S, Radermacher R 1989 Int. J. Heat Mass Transfer 32 2435
[6] Revellin R, Haberschill P 2009 Int. J. Refrig. 32 487
[7] Shannak B A 2008 Nucl. Eng. Des. 238 3277
[8] Lockhart R W, Martinelli R C 1949 Chem. Eng. Prog. 45 39
[9] Friedel L 1979 European Two-Phase Flow Group Meeting (Ispra: ETPFG) E2
[10] Chisholm D 1973 Int. J. Heat Mass Transfer 16 347
[11] Bankoff S G 1960 J. Heat Transfer 11 265
[12] Chawla J M 1967 ASHRAE J. 4 52
[13] Müller-Steinhagen H, Heck K 1986 Chem. Eng. Process 20 297
[14] Tribbe C, Müller-Steinhagen H 2000 Int. J. Multiphase Flow 26 1019
[15] Didi M B O, Kattan N, Thome J R 2002 Int. J. Refrig. 25 935
[16] Zou X, Gong M Q, Chen G F, Sun Z H, Zhang Y, Wu J F 2010 Int. J. Refrig. 33 371
[17] Lin Z H, Wang S Z, Wang D 2003 Gas-Liquid Two Phase Flow and Boiling Heat Transfer (Xian: Xian Jiaotong University Press) p101 (in Chinese) [林宗虎、王树众、王 栋 2003 气液两相流和沸腾换热(西安:西安交通大学出版社)第101页]
[18] Steiner D 1993 VDI-Wrmeatlas (Düsseldorf: Springer) p375
[19] Rouhani S Z, Axelsson E 1970 Int. J. Heat Mass Transfer 13 383
[20] Lemmon E W, Huber M L, McLinden M O 2007 Standard Reference Database 23 (Version 8.0) (Boulder: National Institute of Standards and Technology)
[21] Taylor B N, Kuyatt C E 1994 Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (Boulder: National Institute of Standards and Technology)
[22] Moreno Q J, Thome J R 2007 Int. J. Heat Fluid Flow 28 1049
[23] Moreno Q J, Thome J R 2007 Int. J. Heat Fluid Flow 28 1060
计量
- 文章访问数: 8359
- PDF下载量: 799
- 被引次数: 0