搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米颗粒表面活性剂对微孔喉中束缚液滴释放行为的影响

李品贤 郭峰 温伯尧 骆政园 白博峰

引用本文:
Citation:

纳米颗粒表面活性剂对微孔喉中束缚液滴释放行为的影响

李品贤, 郭峰, 温伯尧, 骆政园, 白博峰

The Effects of Nanoparticle Surfactants on the Release Behavior of Trapped Droplet in Micro-pore Throat

Pinxian Li, Feng Guo, Boyao Wen, Zhengyuan Luo, Bofeng Bai
PDF
导出引用
  • 微孔喉结构内束缚液滴释放是提高原油采收率的关键 . 纳米颗粒表面活性剂能够增强纳米颗粒在油水界面上的吸附稳定性,进而显著影响束缚液滴的释放过程,对于发展纳米驱提采技术具有重要意义 . 本文通过微流控可视化实验与荧光技术,系统研究了纳米颗粒表面活性剂对微孔喉中束缚液滴释放行为的影响 . 在纳米颗粒表面活性剂作用下,微孔喉结构中束缚液滴存在破碎释放与直接释放2种释放状态;获得了微孔喉内束缚液滴释放状态相图,结合液滴受力分析建立了束缚液滴释放状态的临界转变理论模型;通过对比分析液滴长度随液滴释放的临界流量与毛细数的变化,获得了纳米颗粒表面活性剂对液滴释放行为的影响规律;结合荧光实验进一步阐明了纳米颗粒表面活性剂诱发界面黏弹性而抑制微孔喉内束缚液滴释放的作用机制 .
    The release of trapped droplets in pore-throat structures is of great significance to study multiphase flow in porous media. In this paper, the effects of nanoparticle surfactants on the release behavior of trapped droplets in micro-pore throat are investigated using microfluidic visualization system and fluorescence techniques. We demonstrate a droplet control technique in microchannel and observe the release states of trapped droplets in pore-throat. We obtain the phase diagram of droplet states and establish mathematical models describing the critical transition condition by mechanism analysis. Based on the force’s analysis on the trapped droplets, the breakup and release mechanisms are also obtained when droplets move through the pore-throat. In addition, this research reveals the effect of nanoparticle surfactants on droplet release behavior by analyzing the variation of droplet length with flow velocity and capillary number. Nanoparticle surfactants decreases the critical flow velocity of droplet release, while significantly increasing the critical capillary number and this phenomenon becomes more pronounced with increasing concentrations of nanoparticle surfactants. Fluorescence experiments further elucidate the mechanism by which nanoparticle surfactants inhibit the release of trapped droplets in pore-throat by inducing interfacial viscoelasticity. Nanoparticles react with polymers at the interface to form the viscoelastic film. This film-induced interfacial viscoelasticity hinders droplet deformation and increases the viscous resistance between droplets and wall, thereby impeding the release of trapped droplets in pore-throat.
  • [1]

    Jia N, Lv W, Liu Q, Wang D, Liu F, Hu Z. Pore-scale modeling of pressure-driven flow and spontaneous imbibition in fracturing-shut-in-flowback process of tight oil reservoirs 2024Int. J. Energy Res. 13505763

    [2]

    Singh K, Jung M, Brinkmann M, Seemann R. Capillary-dominated fluid displacement in porous media 2019Annu. Rev. Fluid Mech. 51 429449

    [3]

    Liu Z, Liang Y, Wang Q, Guo Y, Gao M, Wang Z, Liu W. Status and progress of worldwide EOR field applications 2020J. Petrol. Sci. Eng. 193 107449

    [4]

    Habib S H, Yunus R, Zakaria R, Biak D R A, Jan B H M, Amir Z. Chemical enhanced oil recovery: Synergetic mechanism of alkali, surfactant and polymer with overview of methyl ester sulfonate as a green alternative for EOR surfactant 2024Fuel 363 130957

    [5]

    Mir H, Siavashi M. Whole-time scenario optimization of steam-assisted gravity drainage (SAGD) with temperature, pressure, and rate control using an efficient hybrid optimization technique 2022Energy 239 122149

    [6]

    Tan Y, Li Q, Xu L, Ghaffar A, Zhou X, Li P. A critical review of carbon dioxide enhanced oil recovery in carbonate reservoirs 2022Fuel 328 125256

    [7]

    Liu J, Zhong L, Hao T, Liu Y, Zhang S. Pore-scale dynamic behavior and displacement mechanisms of surfactant flooding for heavy oil recovery 2022J. Mol. Liq. 349 118207

    [8]

    Zhu X, Chen L, Wang S, Feng Q, Tao W. Pore-scale study of three-phase displacement in porous media 2022Phys. Fluids 34 4

    [9]

    Scanziani A, Lin Q, Alhosani A, Blunt M J, Bijeljic B. Dynamics of fluid displacement in mixed-wet porous media 2020P. Roy. Soc. A 476 2240

    [10]

    Pak T, Butler I B, Geiger S, Van Dijke, Sorbie K S. Droplet fragmentation: 3D imaging of a previously unidentified pore-scale process during multiphase flow in porous media 2015Proc. Nat. Acad. Sci. 112 19471952

    [11]

    Davis R H, Alexander Z Z. Motion of deformable drops through granular media and other confined geometries 2009J. Colloid Interf. Sci. 334 113123

    [12]

    Moragues T, Arguijo D, Beneyton T, Modavi C, Simutis K, Abate A, Baret J, Demello A, Densmore D, Griffiths A. Droplet-based microfluidics 2023Nat. Rev. Methods Primers 3 32

    [13]

    Chen Z, Kheiri S, Young E W K, Kumacheva E. Trends in droplet microfluidics: From droplet generation to biomedical applications 2022Langmuir 38 6233-6248

    [14]

    Elvira K S, Gielen F, Tsai SSH, Nightingale A M. Materials and methods for droplet microfluidic device fabrication 2022Lab Chip 22 859875

    [15]

    Deng Z L, Li P Y, Zhang X, Liu X D. Semi-obstructed splitting behaviors of droplet in an asymmetric microfluidic T-junction 2021Acta Phys. Sin. 70 074701(in Chinese) [邓梓龙, 李鹏宇, 张璇, 刘向东2021 70 074701]

    [16]

    Anna S L. Droplets and bubbles in microfluidic devices 2016Annu. Rev. Fluid Mech. 48 285309

    [17]

    Teh S Y, Lin R, Hung L H, Lee A P. Droplet microfluidics 2008Lab Chip 8 198220

    [18]

    Xu K, Zhu P, Huh C, Balhoff M T. Microfluidic investigation of nanoparticles’ role in mobilizing trapped oil droplets in porous media 2015Langmuir 31 13673-13679

    [19]

    He L, Luo Z Y, Bai B F. Release of a trapped droplet in a single micro pore throat 2019J. Colloid Interf. Sci. 554 1-8

    [20]

    He L, Luo Z Y, Bai B F. Breakup of pancake droplets flowing through a microfluidic constriction 2020Chem. Eng. Sci. 220 115649

    [21]

    Zhang X, Zhang T C, Ge J J, Jiang P, Zhang G C. Effect of surfactants on adsorption behavior of nanoparicles at gas-liquid surface 2020Acta Phys. Sin. 69 026801(in Chinese) [张旋, 张天赐, 葛际江, 蒋平, 张贵才2020 69 026801]

    [22]

    Wen B Y, Sun C Z, Bai B F. Nanoparticle-induced ion-sensitive reduction in decane–water interfacial tension 2018Phys. Chem. Chem. Phys. 20 22796-22804.

    [23]

    Wen B Y, Yang H Z, Yao X T, Luo Z Y, Bai B F. Kinetics and ionic regulation of surfactants desorption at the oil-water interfaces 2022Chin. Sci. Bull 67 3088-3096(in Chinese) [温伯尧, 杨海中, 姚秀田, 骆政园, 白博峰2022科学通报67 3088-3096]

    [24]

    Tang X C, Li Y Q, Liu Z Y, Zhang N. Nanoparticle-reinforced foam system for enhanced oil recovery (EOR): Mechanistic review and perspective 2023Pet. Sci. 20 22822304

    [25]

    Cui M, Emrick T, Russell T P. Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles 2013Science 342 460463

    [26]

    Toor A, Helms B A, Russell T P. Effect of nanoparticle surfactants on the breakup of free-falling water jets during continuous processing of reconfigurable structured liquid droplets 2017Nano Lett. 17 31193125

    [27]

    Toor A, Lamb S, Helms B A, Russell T P. Reconfigurable microfluidic droplets stabilized by nanoparticle surfactants 2018ACS Nano 12 23652372

    [28]

    Chai Y, Lukito A, Jiang Y, Ashby P D, Russell T P. Fine-tuning nanoparticle packing at water-oil interfaces using ionic strength 2017Nano. Lett. 17 64536457

    [29]

    Huang C, Chai Y, Jiang Y, Forth J, Ashby P D, Arras M M L, Hong K, Smith G S, Yin P, Russell T P. The interfacial assembly of polyoxometalate nanoparticle surfactants 2018Nano Lett. 1825252529

    [30]

    Qi J, Yu Z L, Liao G P, Luo Z Y, Bai B F. Effect of nanoparticle surfactants on droplet formation in a flow-focusing microchannel 2021Phys. Fluids 33 112008

    [31]

    Qi J, Peng J Q, Yang S L, Luo Z Y, Bai B F. Effects of nanoparticle surfactants on droplet splitting in a T-junction microchannel 2022Chin. Sci. Bull 67 795804(in Chinese) [齐杰, 彭佳庆, 杨圣贤, 骆政园, 白博峰2022科学通报67 795804]

  • [1] 赵豪, 吴志豪, 胡晓红, 凡凤仙, 苏明旭. 外加液滴条件下固体细颗粒声凝并特性.  , doi: 10.7498/aps.72.20221912
    [2] 唐修行, 陈泓樾, 王婧婧, 王志军, 臧渡洋. 表面活性剂液滴过渡沸腾的Marangoni效应与二次液滴形成.  , doi: 10.7498/aps.72.20230919
    [3] 周浩, 李毅, 刘海, 陈鸿, 任磊生. 最优输运无网格方法及其在液滴表面张力效应模拟中的应用.  , doi: 10.7498/aps.70.20211078
    [4] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟.  , doi: 10.7498/aps.70.20210094
    [5] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征.  , doi: 10.7498/aps.70.20201358
    [6] 王凯宇, 庞祥龙, 李晓光. 超疏水表面液滴的振动特性及其与液滴体积的关系.  , doi: 10.7498/aps.70.20201771
    [7] 张旋, 张天赐, 葛际江, 蒋平, 张贵才. 表面活性剂对气-液界面纳米颗粒吸附规律的影响.  , doi: 10.7498/aps.69.20190756
    [8] 李春曦, 施智贤, 庄立宇, 叶学民. 活性剂对表面声波作用下薄液膜铺展的影响.  , doi: 10.7498/aps.68.20190791
    [9] 李玉杰, 黄军杰, 肖旭斌. 液滴撞击圆柱内表面的数值研究.  , doi: 10.7498/aps.67.20180364
    [10] 叶学民, 李明兰, 张湘珊, 李春曦. 表面弹性对含可溶性活性剂垂直液膜排液的影响.  , doi: 10.7498/aps.67.20181020
    [11] 焦云龙, 刘小君, 逄明华, 刘焜. 固体表面液滴铺展与润湿接触线的移动分析.  , doi: 10.7498/aps.65.016801
    [12] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析.  , doi: 10.7498/aps.64.154705
    [13] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究.  , doi: 10.7498/aps.64.054701
    [14] 李春曦, 陈朋强, 叶学民. 含活性剂液滴在倾斜粗糙壁面上的铺展稳定性.  , doi: 10.7498/aps.64.014702
    [15] 梁刚涛, 沈胜强, 郭亚丽, 陈觉先, 于欢, 李熠桥. 实验观测液滴撞击倾斜表面液膜的特殊现象.  , doi: 10.7498/aps.62.084707
    [16] 李春曦, 裴建军, 叶学民. 波纹基底上含不溶性活性剂液滴的铺展稳定性.  , doi: 10.7498/aps.62.174702
    [17] 兰忠, 朱霞, 彭本利, 林勐, 马学虎. 滴状冷凝过程液滴自由表面温度场分析.  , doi: 10.7498/aps.61.150508
    [18] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究.  , doi: 10.7498/aps.61.184702
    [19] 鄢振麟, 解文军, 沈昌乐, 魏炳波. 声悬浮液滴的表面毛细波及八阶扇谐振荡.  , doi: 10.7498/aps.60.064302
    [20] 普小云, 柳清菊, 张中明, 林理忠. 表面单分子膜的垂悬液滴方法研究.  , doi: 10.7498/aps.47.60
计量
  • 文章访问数:  104
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-09

/

返回文章
返回
Baidu
map