搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于亚多普勒wm-NICE-OHMS的14CO2光谱测量技术理论研究

李勇 周晓彬 赵刚 尹润涛 杨家琪 闫晓娟 马维光

引用本文:
Citation:

基于亚多普勒wm-NICE-OHMS的14CO2光谱测量技术理论研究

李勇, 周晓彬, 赵刚, 尹润涛, 杨家琪, 闫晓娟, 马维光
cstr: 32037.14.aps.74.20241482

Theoretical study of 14CO2 spectrum measurement technology based on sub-Doppler wm-NICE-OHMS

LI Yong, ZHOU Xiaobin, ZHAO Gang, YIN Runtao, YANG Jiaqi, YAN Xiaojuan, MA Weiguang
cstr: 32037.14.aps.74.20241482
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 14CO2光谱检测在大气环境学和同位素定年等领域中具有重要应用, 但由于其自然丰度极低且光谱重叠干扰严重, 检测难度极大. 基于亚多普勒光谱的噪声免疫腔增强光外差分子光谱(NICE-OHMS)技术因其具有高的灵敏度和选择性, 有望成为下一代14CO2检测方法. 本文理论分析了亚多普勒NICE-OHMS光谱测量技术. 通过模拟真实大气光谱, 选择2209.108 cm–1处的14CO2跃迁线作为最佳测量目标, 建立了14CO2亚多普勒饱和吸收NICE-OHMS模型, 并与多普勒展宽光谱进行对比, 验证了波长调制(wm-)亚多普勒NICE-OHMS技术可有效抑制光谱重叠干扰, 实现高分辨率的14CO2光谱测量. 最终, 通过数值模拟分析了压强和调制系数等参数对信号幅度的影响, 确定了最佳实验条件, 为高灵敏14CO2光谱测量提供理论依据.
    The massive emission of greenhouse gases, particularly CO2, has led to severe damage to the Earth’s ecological environment and poses a threat to human health. Many countries have therefore proposed policies to curb the greenhouse effect. Carbon monitoring is a critical prerequisite for realizing these goals, and tracking carbon emission sources can support the precise implementation and advancement of related policies more effectively. The contribution of fossil fuel combustion to greenhouse gas emissions can be inferred by detecting the abundance of 14C in carbon dioxide in a specific region. Conventional 14CO2 detection methods have significant drawbacks, including complicated operation, high cost and large equipment size. Laser absorption spectroscopy (LAS) offers advantages such as real-time, online in-situ measurement and simple operation, making it suitable for the online detection of isotopes. Among the various LAS techniques, noise immunity cavity enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is the most sensitive. This method integrates frequency modulation spectroscopy (FMS) into cavity enhanced spectroscopy (CES) to suppress the low-frequency noise while increasing the absorption paths, providing a minimum detectable absorption coefficient as low as 10–13. Additionally, the accumulation of high intracavity laser power in NICE-OHMS can stimulate saturation absorption, which has a narrow spectral width that can mitigate spectral overlap. In this work, we model the spectral signals of 14CO2 at different locations and select the transition line of 14CO2 at 2209.108 cm–1 as an optimal measurement target based on the principles of high-intensity and well-resolution. The theoretical analysis of the NICE-OHMS technique is then carried out, and theoretical simulations of a mixed sample of 14CO2 and its nearby interfering gases (13CO2, 12CO2, and N2O), are performed under the simulated experimental conditions. The results of the simulation show that the Doppler broadened spectral signal of 14CO2 is covered by the other gases’ signals with a very low amplitude, which is adverse to the detection of 14CO2. To eliminate the linear slope of the Doppler broadened signal and to further improve the signal-to-noise ratio, we perform 14CO2 spectral measurements by using wavelength-modulated NICE-OHMS (wm-NICE-OHMS). The results of the simulation show that the spectral lines are effectively separated, and the detection accuracy of the 14CO2 ratio is greatly improved. Finally, the effects of pressure and modulation index on the 14CO2 wm-NICE-OHMS signal are analyzed. The results show that when the pressure is 42 mTorr and the modulation index is 1.07, the signal amplitude of wm-NICE-OHMS reaches its maximum. This work lays a theoretical foundation for the high precision detection of 14CO2 in real-time environmental monitoring. The potential for large-scale application of wm-NICE-OHMS in carbon emission tracking is highlighted, providing a more cost-effective alternative to traditional detection methods. Furthermore, the technology is able to suppress spectral interference from other gases and achieve high resolution in 14CO2 measurements, which will greatly help monitor and reduce greenhouse gas emissions.
      通信作者: 赵刚, gangzhao@sxu.edu.cn ; 马维光, mwg@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2023YFF0614000, 2022YFC3703900)、国家自然科学基金(批准号: 62327813, 62175139, 62375161, 61975103)、山西省留学人员科技活动择优资助项目(批准号: 20220001)和江淮前沿技术协同创新中心追梦基金(批准号: 2023-ZM01C007)资助的课题.
      Corresponding author: ZHAO Gang, gangzhao@sxu.edu.cn ; MA Weiguang, mwg@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2023YFF0614000, 2022YFC3703900), the National Natural Science Foundation of China (Grant Nos. 62327813, 62175139, 62375161, 61975103), the Shanxi Province Science and Technology Activities for Returned Overseas Researcher, China (Grant No. 20220001), and the Dreams Foundation of Jianghuai Advance Technology Center, China (Grant No. 2023-ZM01C007).
    [1]

    Zhao X, Ma X, Chen B, Shang Y, Song M 2022 Resour. Conserv. Recycl. 176 105959Google Scholar

    [2]

    Kong W, Wan F, Lei Y, Wang C, Sun H, Wang R, Chen W G 2024 Anal. Chem. 96 15313Google Scholar

    [3]

    Ge H, Kong W P, Wang R, Zhao G, Ma W G, Chen W G, Wan F 2023 Opt. Lett. 48 2186Google Scholar

    [4]

    Hou X L 2018 J. Radioanal. Nucl. Chem. 318 1597Google Scholar

    [5]

    Hua Q 2009 Quat. Geochronol. 4 378Google Scholar

    [6]

    Levin I, Naegler T, Kromer B, Diehl M, Francey R, Gomez-Pelaez A J, Steele P, Wagenbach D, Weller R, Worthy D 2010 Tellus B: Chem. Phys. Meteorol. 62 26Google Scholar

    [7]

    Povinec P 2018 J. Radioanal. Nucl. Chem. 318 1573Google Scholar

    [8]

    Maity A, Maithani S, Pradhan M 2021 Anal. Chem. 93 388Google Scholar

    [9]

    Lehmann B, Wahlen M, Zumbrunn R, Oeschger H, Schnell W 1977 Appl. Phys. 13 153Google Scholar

    [10]

    Labrie D, Reid J 1981 Appl. Phys. A 24 381Google Scholar

    [11]

    McCartt A, Jiang J 2022 ACS Sensors 7 3258Google Scholar

    [12]

    Zhang Z, Peng T, Nie X Y, Agarwal G S, Scully M O 2022 Light Sci. Appl. 11 274Google Scholar

    [13]

    Chen W P, Qiao S D, Lang Z, Jiang J C, He Y, Shi Y W, Ma Y F 2023 Opt. Lett. 48 3989Google Scholar

    [14]

    Hashimoto K, Nakamura T, Kageyama T, Badarla V R, Shimada H, Horisaki R, Ideguchi T 2023 Light Sci. Appl. 12 48Google Scholar

    [15]

    Ma Y F, Liang T T, Qiao S D, Liu X N, Lang Z T 2023 Ultrafast Sci. 3 0024Google Scholar

    [16]

    Qiao S D, Ma P Z, Tsepelin V, Han G W, Liang J X, Ren W, Zheng H D, Ma Y F 2023 Opt. Lett. 48 419Google Scholar

    [17]

    Zhang C, Qiao S D, He Y, Zhou S, Qi L, Ma Y F 2023 Appl. Phys. Lett. 122 241003Google Scholar

    [18]

    Lang Z T, Qian S D, Ma Y F 2023 Light Adv. Manuf. 4 233Google Scholar

    [19]

    Galli I, Pastor P C, Di Lonardo G, Fusina L, Giusfredi G, Mazzotti D, Tamassia F, De Natale P 2011 Mol. Phys. 109 2267Google Scholar

    [20]

    Terabayashi R, Saito K, Sonnenschein V, Okuyama Y, Iwamoto K, Mano K, Kawashima Y, Furumiya T, Tojo K, Ninomiya S, Yoshida K, Tomita H 2022 J. Appl. Phys. 132 083102Google Scholar

    [21]

    Jiao K, Gao J, Yang J Q, Zhao G, Shi Z, Wang X P, Zhu D, He H Y, Qing J, Yan X J, Ma W G, Jia S T 2024 Microwaves Opt. Technol. Lett. 66 33946Google Scholar

    [22]

    Galli I, Bartalini S, Ballerini R, Barucci M, Cancio P, De Pas M, Giusfredi G, Mazzotti D, Akikusa N, De Natale P 2016 Optica 3 385Google Scholar

    [23]

    齐汝宾, 赫树开, 李新田, 汪献忠 2015 光谱学与光谱分析 35 172Google Scholar

    Qi R B, He S K, Li X T, Wang X Z 2015 Spectrosc. Spect. Anal. 35 172Google Scholar

    [24]

    Jiang J, McCartt A D 2022 International Symposium on Molecular Spectroscopy Champaign-Urbana, Illinois, USA, June 20-24, 2022 p1

    [25]

    Zhou X B, Zhao G, Li Y, Cheng Z W, Jiao K, Zhang B F, Zhang Z H, Li Y K, Yan X J, Ma W G, Jia S T 2024 Opt. Lett. 49 202Google Scholar

    [26]

    Zak E J, Tennyson J, Polyansky O L, Lodi L, Zobov N F, Tashkun S A, Perevalov V I 2017 J. Quant. Spectrosc. Radiat. Transfer 189 267Google Scholar

    [27]

    Gagliardi G, Loock H-P 2014 Cavity-Enhanced Spectro- scopyand Sensing (Vol. 179) (Berlin: Springer Berlin Heidelberg) p231

    [28]

    Foltynowicz A, Ma W, Schmidt F M, Axner O 2009 J. Opt. Soc. Am. B: Opt. Phys. 26 1384Google Scholar

    [29]

    Ma W G, Foltynowicz A, Axner O 2008 J. Opt. Soc. Am. B: Opt. Phys. 25 1144Google Scholar

    [30]

    Foltynowicz A 2009 Ph. D. Dissertation (Sweden: Umeå University

    [31]

    Šimečková M, Jacquemart D, Rothman L, Gamache R, Goldman A 2006 J. Quant. Spectrosc. Radiat. Transfer 98 130Google Scholar

  • 图 1  不同波数的14CO2, N2O, 12CO2, 13CO2混合气体直接吸收模拟信号(黑线), 以及不同波数的14CO2直接吸收模拟信号(红线)

    Fig. 1.  Directly absorbed analog signals for 14CO2, N2O, 12CO2, 13CO2 gas mixtures with different wave numbers (black line); directly absorbed analog signals for 14CO2 with different wave numbers (red line).

    图 2  NICE-OHMS原理图[27]

    Fig. 2.  NICE-OHMS schematic[27].

    图 3  14CO2, N2O, 12CO213CO2混合气体的亚多普勒模拟信号

    Fig. 3.  Sub-Doppler analog signal for gas mixtures such as 14CO2, N2O, 12CO2, 13CO2.

    图 4  14CO2, N2O, 12CO213CO2混合气体的wm-NICE-OHMS模拟信号

    Fig. 4.  wm-NICE-OHMS analog signal for gas mixtures such as 14CO2, N2O, 12CO2, 13CO2.

    图 5  (a) β = 0.5, 1, 1.5时14CO2 wm-NICE-OHMS信号; (b) 14CO2 wm-NICE-OHMS信号幅度随调制系数β的变化

    Fig. 5.  (a) 14CO2 wm-NICE-OHMS signal when β = 0.5, 1, 1.5; (b) variation of 14CO2 wm-NICE-OHMS signal amplitude with β.

    图 6  (a) 压强为100, 200, 300 mTorr时14CO2 wm-NICE-OHMS信号; (b) 14CO2 wm-NICE-OHMS信号幅度随压强的变化

    Fig. 6.  (a) 14CO2 wm-NICE-OHMS signal when pressure is 100, 200, 300 mTorr; (b) variation of 14CO2 wm-NICE-OHMS signal amplitude with pressure.

    表 1  14CO2, N2O, 12CO213CO2光谱的其他参数

    Table 1.  Other parameters of 14CO2, N2O, 12CO2 and 13CO2 spectra.

    波数/cm–1 线强$ /({\rm cm}^{-1}{\cdot}{\rm molecule}^{-1}{\cdot}{\rm cm}^{-2}) $ 跃迁底态能量/cm–1 总配分函数
    14CO2 2209.107679 2.83×10–18 163.8828 2033.395
    12CO2 2209.124896 1.802×10–29 5785.2772 286.09
    13CO2 2209.115876 4.23×10–27 3394.9427 576.64
    13CO2 2209.11747 1.54×10–27 3648.8668 576.64
    N2O 2209.08543 3.41×10–21 1282.3324 4984.9
    N2O 2209.11444 6.61×10–22 654.1553 4984.9
    下载: 导出CSV
    Baidu
  • [1]

    Zhao X, Ma X, Chen B, Shang Y, Song M 2022 Resour. Conserv. Recycl. 176 105959Google Scholar

    [2]

    Kong W, Wan F, Lei Y, Wang C, Sun H, Wang R, Chen W G 2024 Anal. Chem. 96 15313Google Scholar

    [3]

    Ge H, Kong W P, Wang R, Zhao G, Ma W G, Chen W G, Wan F 2023 Opt. Lett. 48 2186Google Scholar

    [4]

    Hou X L 2018 J. Radioanal. Nucl. Chem. 318 1597Google Scholar

    [5]

    Hua Q 2009 Quat. Geochronol. 4 378Google Scholar

    [6]

    Levin I, Naegler T, Kromer B, Diehl M, Francey R, Gomez-Pelaez A J, Steele P, Wagenbach D, Weller R, Worthy D 2010 Tellus B: Chem. Phys. Meteorol. 62 26Google Scholar

    [7]

    Povinec P 2018 J. Radioanal. Nucl. Chem. 318 1573Google Scholar

    [8]

    Maity A, Maithani S, Pradhan M 2021 Anal. Chem. 93 388Google Scholar

    [9]

    Lehmann B, Wahlen M, Zumbrunn R, Oeschger H, Schnell W 1977 Appl. Phys. 13 153Google Scholar

    [10]

    Labrie D, Reid J 1981 Appl. Phys. A 24 381Google Scholar

    [11]

    McCartt A, Jiang J 2022 ACS Sensors 7 3258Google Scholar

    [12]

    Zhang Z, Peng T, Nie X Y, Agarwal G S, Scully M O 2022 Light Sci. Appl. 11 274Google Scholar

    [13]

    Chen W P, Qiao S D, Lang Z, Jiang J C, He Y, Shi Y W, Ma Y F 2023 Opt. Lett. 48 3989Google Scholar

    [14]

    Hashimoto K, Nakamura T, Kageyama T, Badarla V R, Shimada H, Horisaki R, Ideguchi T 2023 Light Sci. Appl. 12 48Google Scholar

    [15]

    Ma Y F, Liang T T, Qiao S D, Liu X N, Lang Z T 2023 Ultrafast Sci. 3 0024Google Scholar

    [16]

    Qiao S D, Ma P Z, Tsepelin V, Han G W, Liang J X, Ren W, Zheng H D, Ma Y F 2023 Opt. Lett. 48 419Google Scholar

    [17]

    Zhang C, Qiao S D, He Y, Zhou S, Qi L, Ma Y F 2023 Appl. Phys. Lett. 122 241003Google Scholar

    [18]

    Lang Z T, Qian S D, Ma Y F 2023 Light Adv. Manuf. 4 233Google Scholar

    [19]

    Galli I, Pastor P C, Di Lonardo G, Fusina L, Giusfredi G, Mazzotti D, Tamassia F, De Natale P 2011 Mol. Phys. 109 2267Google Scholar

    [20]

    Terabayashi R, Saito K, Sonnenschein V, Okuyama Y, Iwamoto K, Mano K, Kawashima Y, Furumiya T, Tojo K, Ninomiya S, Yoshida K, Tomita H 2022 J. Appl. Phys. 132 083102Google Scholar

    [21]

    Jiao K, Gao J, Yang J Q, Zhao G, Shi Z, Wang X P, Zhu D, He H Y, Qing J, Yan X J, Ma W G, Jia S T 2024 Microwaves Opt. Technol. Lett. 66 33946Google Scholar

    [22]

    Galli I, Bartalini S, Ballerini R, Barucci M, Cancio P, De Pas M, Giusfredi G, Mazzotti D, Akikusa N, De Natale P 2016 Optica 3 385Google Scholar

    [23]

    齐汝宾, 赫树开, 李新田, 汪献忠 2015 光谱学与光谱分析 35 172Google Scholar

    Qi R B, He S K, Li X T, Wang X Z 2015 Spectrosc. Spect. Anal. 35 172Google Scholar

    [24]

    Jiang J, McCartt A D 2022 International Symposium on Molecular Spectroscopy Champaign-Urbana, Illinois, USA, June 20-24, 2022 p1

    [25]

    Zhou X B, Zhao G, Li Y, Cheng Z W, Jiao K, Zhang B F, Zhang Z H, Li Y K, Yan X J, Ma W G, Jia S T 2024 Opt. Lett. 49 202Google Scholar

    [26]

    Zak E J, Tennyson J, Polyansky O L, Lodi L, Zobov N F, Tashkun S A, Perevalov V I 2017 J. Quant. Spectrosc. Radiat. Transfer 189 267Google Scholar

    [27]

    Gagliardi G, Loock H-P 2014 Cavity-Enhanced Spectro- scopyand Sensing (Vol. 179) (Berlin: Springer Berlin Heidelberg) p231

    [28]

    Foltynowicz A, Ma W, Schmidt F M, Axner O 2009 J. Opt. Soc. Am. B: Opt. Phys. 26 1384Google Scholar

    [29]

    Ma W G, Foltynowicz A, Axner O 2008 J. Opt. Soc. Am. B: Opt. Phys. 25 1144Google Scholar

    [30]

    Foltynowicz A 2009 Ph. D. Dissertation (Sweden: Umeå University

    [31]

    Šimečková M, Jacquemart D, Rothman L, Gamache R, Goldman A 2006 J. Quant. Spectrosc. Radiat. Transfer 98 130Google Scholar

  • [1] 齐刚, 黄印博, 凌菲彤, 杨佳琦, 黄俊, 杨韬, 张雷雷, 卢兴吉, 袁子豪, 曹振松. 多微管阵列结构腔-原子吸收光谱测量Rb同位素比.  , 2023, 72(5): 053201. doi: 10.7498/aps.72.20221963
    [2] 卞晓鸽, 周胜, 张磊, 何天博, 李劲松. 基于标准样品回归算法和腔增强光谱的NO2检测方法.  , 2021, 70(5): 050702. doi: 10.7498/aps.70.20201322
    [3] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定.  , 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [4] 赵彦东, 方勇华, 李扬裕, 吴军, 李大成, 崔方晓, 刘家祥, 王安静. 基于椭圆腔共振的石英增强光声光谱理论研究.  , 2016, 65(19): 190701. doi: 10.7498/aps.65.190701
    [5] 孙军平, 杨军, 林建恒, 蒋国健, 衣雪娟, 江鹏飞. 船舶水下辐射噪声信号理论模型及仿真.  , 2016, 65(12): 124301. doi: 10.7498/aps.65.124301
    [6] 邹达人, 金硕, 许珂, 吕广宏, 赵振华, 程龙, 袁悦. 钨中氢同位素热脱附实验的速率理论模拟研究.  , 2015, 64(7): 072801. doi: 10.7498/aps.64.072801
    [7] 李相贤, 徐亮, 高闽光, 童晶晶, 冯明春, 刘建国, 刘文清. 温室气体及碳同位素比值红外光谱反演精度的影响因素研究.  , 2015, 64(2): 024217. doi: 10.7498/aps.64.024217
    [8] 李相贤, 徐亮, 高闽光, 童晶晶, 金岭, 李胜, 魏秀丽, 冯明春. CO2及其碳同位素比值高精度检测研究.  , 2013, 62(18): 180203. doi: 10.7498/aps.62.180203
    [9] 李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国. 基于傅里叶变换红外光谱法CO2气体碳同位素比检测研究.  , 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [10] 房文汇, 里佐威, 李占龙, 曲冠男, 欧阳顺利, 门志伟. 类胡萝卜素的分子光谱研究.  , 2012, 61(15): 153301. doi: 10.7498/aps.61.153301
    [11] 王晓璐, 令狐荣锋, 杨建会, 吕兵, 高涛, 杨向东. Ne同位素替代下Ne-HF碰撞截面的理论计算.  , 2012, 61(9): 093101. doi: 10.7498/aps.61.093101
    [12] 王刚, 方向正, 郭建友. 相对论平均场理论对Pt同位素形状演化的研究.  , 2012, 61(10): 102101. doi: 10.7498/aps.61.102101
    [13] 何曼丽, 王晓, 高思峰. 电子与氢及其同位素分子碰撞的非解离性电离截面研究.  , 2012, 61(4): 043404. doi: 10.7498/aps.61.043404
    [14] 黄传禄, 丁耀根, 王勇. 双间隙耦合腔电子电导的理论与计算仿真.  , 2011, 60(12): 128401. doi: 10.7498/aps.60.128401
    [15] 李文峰, 令狐荣锋, 程新路, 杨向东. 氦同位素原子与钠分子碰撞转动激发积分散射截面的理论计算.  , 2010, 59(7): 4591-4597. doi: 10.7498/aps.59.4591
    [16] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. He同位素与H2分子碰撞第二振动激发分波截面的理论研究.  , 2009, 58(6): 3827-3832. doi: 10.7498/aps.58.3827
    [17] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. 不同能量的氦原子与同位素分子H2(D2,T2)碰撞分波截面的理论计算.  , 2008, 57(1): 155-159. doi: 10.7498/aps.57.155
    [18] 张玉美, 许甫荣. 丰中子氮同位素β-衰变的理论研究.  , 2008, 57(8): 4826-4832. doi: 10.7498/aps.57.4826
    [19] 李 月, 杨宝俊, 林红波, 刘晓华. 基于特定混沌系统微弱谐波信号频率检测的理论分析与仿真.  , 2005, 54(5): 1994-1999. doi: 10.7498/aps.54.1994
    [20] 杨介甫. 关于用放射性同位素传感液位的严格线性刻度和放射源的强度分布.  , 1985, 34(2): 205-212. doi: 10.7498/aps.34.205
计量
  • 文章访问数:  398
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-22
  • 修回日期:  2024-12-17
  • 上网日期:  2025-01-24
  • 刊出日期:  2025-03-20

/

返回文章
返回
Baidu
map