-
本文基于低频三角波扫描加高频正弦波调制的扫描波长调制策略,提出了一种高精度、免标定分子吸收率函数重构方法。该方法利用谱线在扫描频率下对应的各次谐波信号重构出以该频率为中心、以调制深度为半宽度频域范围内的透过率信息,结合低频扫描即可得到谱线透过率信息,最后对频率重叠区域的透过率进行插值平均即可得到分子吸收率函数。为验证该方法的测量精度,利用CO2分子在6330.821cm-1谱线对不同浓度CO2的吸收率函数进行了重构,并拟合得到浓度,吸收率拟合残差标准差达到10-5,强吸收与弱吸收的测量信噪比分别达到了503与222;3000次连续在线浓度测量结果分布直方图表明,谐波重构法测量稳定性显著优于直接吸收法和二次谐波峰值法,预期可为谱线参数的高精度标定以及复杂工业现场中弱吸收气体参数高精度在线监测提供新的可靠测量方法。This paper introduces a high-precision, calibration-free method for reconstructing molecular absorbance profile. The method employs a scanning wavelength modulation strategy that integrates low-frequency triangular wave scanning with high-frequency sine wave modulation. Specifically, it utilizes harmonic signals corresponding to the spectral lines at the scanning frequency to reconstruct transmittance information centered around that frequency, using the modulation depth as the half-width frequency range. By incorporating low-frequency scanning, the transmittance information of the spectral lines can be accurately obtained. Finally, through interpolation and averaging of the transmittance in overlapping frequency regions, the molecular absorbance profile is reconstructed.The main content of this paper is structured into three key components: theoretical derivation, numerical simulation, and experimental validation of the harmonic reconstruction method. In the theoretical derivation section, the instantaneous laser frequency is represented as a parameter "x" using a cosine function and is subsequently substituted into the Fourier expansion of the laser transmittance. Then the transmittance function is reconstructed based on Chebyshev polynomials. In the numerical simulation section, we illustrate the comprehensive process of the harmonic reconstruction method, including harmonic detection, data matrix reconstruction, and the interpolation and averaging of data matrix slices to ultimately obtain the transmittance function. Following this, systematic errors in the reconstructed transmittance functions are analyzed and compared for various harmonic orders and modulation depths through numerical simulations. The results show that the systematic error decreases with the harmonic order and increases with the modulation depth. In the experimental verification section, to evaluate the measurement accuracy of this method, we reconstructed the absorbance profile for different concentrations of CO2 using the 6330.821 cm-1 spectral line. The standard deviation of the fitting residual of the absorbance profile is in the order of 10-5. The signal-to-noise ratios were 503 and 222 for the strong and weak absorptions, respectively. We conducted 3000 consecutive online measurements and compared the harmonic reconstruction method with both the direct absorption method and the second harmonic peak method. Statistical analyses were made regarding the standard deviations and Gaussian distributions of the deduced concentration results. The results indicate that the standard deviation from the harmonic reconstruction method is less than half of those from the direct absorption method and the second harmonic peak method, demonstrating significantly superior measurement stability. This method holds promise as a new reliable approach for the high-precision measurement of spectral line parameters and online monitoring of weakly absorbing gas parameters in complex industrial environments.
-
Keywords:
- scanning wavelength modulation spectrum /
- harmonic detection /
- transmittance data matrix /
- absorbance profile recovering
-
[1] Adámek P, Olejníček J, Čada M, Kment Š, Hubička Z 2013 Opt. Lett. 38 2428
[2] Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2016 Prog. Energ. Combust. 60 132
[3] Witzel O, Klein A, Meffert C, Schulz C, Kaiser S A, Ebert V 2015 P. Combust. Inst. 35 3653
[4] Fissiaux L, Delière Q, Blanquet G, Robert S, Vandaele A C, Lepère M 2014 J. Mol. Spectrosc. 297 35
[5] Ghysels M, Durry G, Amarouche N 2013 Spectrochim. Acta A 107 55
[6] McManus J B, Zahniser M S, Nelson D D, Shorter J H, Herndon S, Wood E 2010 Opt. Eng. 49 111124
[7] McManus J B, Zahniser M S, Nelson D D, Shorter J H, Herndon S C, Jervis D, Agnese M, McGovern R, Yacovitch T I, Roscioli J R 2015 Appl. Phys. B 119 203
[8] Zhao G, Tan W, Jia M, Hou J, Ma W, Dong L, Zhang L, Feng X, Wu X, Yin W, Xiao L, Axner O, Jia S 2016 Sensors 16 1544
[9] Cai W W, Kaminski C F 2014 Appl. Phys. Lett. 104 154106
[10] Hangauer A, Chen J, Strzoda R, Ortsiefer M, Amann M, 2008 Opt. Lett. 33 1566
[11] Bolshov M A, Kuritsyn Y A, Romanovskii Y V 2015 Spectrochim. Acta B 106 45
[12] Neethu S, Verma R, Kamble S S, Radhakrishnan J K, Krishnapur P P, Padaki V C 2014 Sensor. Actuat. B-Chem 192 70
[13] Werle P A 1998 Spectrochim. Acta A 54 197
[14] Bain J R P, Johnstone W, Ruxton K, Stewart G, Lengden M, Duffin K 2011 J. Lightw. Technol. 29 987
[15] Reid J, Labrie D 1981 Appl. Phys. B 26 203
[16] Rieker G B, Jeffffries J B, Hanson R K 2009 Appl. Optics. 48 5546
[17] Wang Z H, Fu P F, Chao X 2019 Appl. Sci. 9 2723
[18] Goldenstein C S, Strand C L, Schultz I A, Sun K, Jeffries J B, Hanson R K 2014 Appl. Optics. 53 356
[19] Peng Z M, Du Y J, Che L, Li X H, ZhengK J 2011 Opt. Express 19 23104
[20] Stewart G, Johnstone W, Bain J, Ruxton K, Duffin K 2011 J. Lightwave Technol. 29 811
[21] Peng Z M, Du Y J, Che L, Yang Q S 2012 Opt. Express 20 11976
[22] Goldenstein C S, Hanson R K 2015 J. Quant. Spectrosc. RA. 152 127
[23] Rothman L S, Gordon I E, Babikov Y, Barbe A, Chris Benner D, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le Roy R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Müller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. RA. 130 4
[24] Buchholz B, Böse N, Ebert V 2014 Appl. Phys. B 116 883
[25] Pogány A, Klein A, Ebert V 2015 J. Quant. Spectrosc. RA. 165 108
[26] Goldenstein C S, Jeffries J B, Hanson R K 2013 J. Quant. Spectrosc. RA. 130 100
计量
- 文章访问数: 208
- PDF下载量: 2
- 被引次数: 0