-
水下无线光通信(UWOC)具有定向传输的特点,相较于声呐、无线电等广播式传输模式具有更高的安全性.然而,由于海水散射效应部分光子在传输过程中会被散射出预设路径,从而造成信息泄露风险.本文基于搭线窃听信道模型提出一种UWOC物理层安全性分析模型以评估信息泄露风险.该模型通过计算UWOC系统中合法信道与窃听信道的容量差值,来评估通信系统的安全性.具体而言,该模型首先基于蒙特卡洛模拟与实验测量方法分析信道中散射光子的三维分布,然后从信息论角度分析合法通信双方信道容量以及窃听信道容量,最终获得安全保密容量的三维空间分布,从而评估散射光子所造成的信息泄露风险与系统的通信安全性.本文应用该模型对清澈海水环境下的UWOC系统的安全性进行了分析,研究发现传输路径附近一定范围内系统的保密容量为零,证明散射光子会造成信息泄露.本研究成果为UWOC系统定量安全分析提供了解决策略,能够为UWOC系统和编解码方案设计提供有力支撑.Underwater wireless optical communication (UWOC) provides significant advantages, including high bandwidth, low latency, and low power consumption, establishing it as a crucial technology for building information networks in marine environments. However, due to the scattering effect of seawater, some photons carrying information are inevitably scattered out of their predetermined paths, resulting in the potential for information leakage. Therefore, we propose a physical-layer security analysis model for UWOC systems based on the wiretap channel model. The model evaluates the security of the communication system by calculating the capacity difference between the legitimate channel and the eavesdropping channel in the UWOC system. Specifically, the model first constructs the three-dimensional intensity distribution of scattered photons in the underwater channel via Monte Carlo simulations and experimental measurements. Then, it calculates the capacities of both the legitimate and eavesdropping channels based on the decoding results. Finally, the three-dimensional distribution of secrecy capacity is derived to assess the security of the communication system. This article applies this model to analyze the security of the UWOC system in clear seawater environments. It is found that the secrecy capacity of the system is zero within a certain range near the transmission path, demonstrating that scattered photons can cause information leakage. We recommend that, in practical applications, monitoring the non-signal transmission area near the transmitter is essential to ensure communication security. This research provides a solution for the quantitative security analysis of UWOC, which can strongly support the design of UWOC systems and encoding/decoding schemes.
-
Keywords:
- Underwater wireless optical communication /
- Physical-layer security /
- Scattered photons /
- Monte Carlo /
- Secrecy capacity
-
[1] Qi Z R, Zhao X Y, Pompili D 2023 IEEE Trans. Commun. 71 7163
[2] Naik R P, Salman M, Bolboli J, Shetty C S, Chung W Y 2024 IEEE Trans. Veh. Technol. 73 8420
[3] Esmaiel H, Sun H X 2024 Sensors 24 7075
[4] Zheng X T, Guo L X, Cheng M J, Li J T 2018 Acta Phys. Sin. 67 214206(in Chinese) [郑晓桐,郭立新,程明建,李江挺2018 67214206]
[5] Abd El Mottaleb S A, Singh M, Armghan A, Atieh A, Aly M H 2025 Opt. Commun. 574 131204
[6] Zhang L, Wang Z M, Wei Z X, Chen C, Wei G D, Fu H Y, Dong Y H 2020 Opt. Express 28 31796
[7] Yan Z Q, Hu C Q, Li Z M, Li Z Y, Hang Z, Xian M J 2021 Photonics Res. 9 2360
[8] Fei C, Wang Y, Du J, Chen R L, Lv N F, Zhang G W, Tian J H, Hong X J, He S L 2022 Opt. Express 30 2326
[9] Nath N, Chouhan S 2024 IEEE Internet Things J. 11 39721
[10] Li S, Wang P, Li G, Zhang X, Li H, Zhou B, Yang T 2023 Opt. Express 31 34729
[11] Kong M W, Wang J L, Chen Y F, Ali T, Sarwar R, Qiu Y, Wang S L, Han J, Xu J 2017 Opt. Express 25 21509
[12] Fu X Q, Li H W, Shi J H, Li T, Bao W S 2025 Sci. China-Phys. Mech. Astron. 68 210314
[13] Li Z F, Kong X H, Zhang J, Shao L D, Zhang D J, Liu J, Wang X, Zhu W R, Qiu C W 2022 Laser Photon. Rev. 16 2200113
[14] Wang H M, Zhang X, Jiang J C 2019 IEEE Wirel. Commun. 26 32
[15] Wyner A D 1975 Bell Syst. Tech. J. 54 1356
[16] Guan K, Cho J, Winzer P J 2018 Opt. Commun. 408 31
[17] Shannon C E, Weaver W 1949The Mathematical Theory of Information (Urbana: University of Illinois Press) p145
[18] Williamson C A, Hollins R C 2022 Appl. Opt. 61 9951
[19] Zhang J L, Kou L L, Yang Y, He F T, Duan Z L 2020 Opt. Commun. 475 126214
[20] Ramley I, Alzayed H M, Al-Hadeethi Y, Chen M G, Barasheed A Z 2024 Mathematics 12 3904
[21] Wen H, Yin H X, Ji X Y, Huang A 2023 Appl. Opt. 62 6883
[22] Gabriel C, Khalighi M A, Bourennane S, Léon P, Rigaud V 2013 J. Opt. Commun. Netw. 5 1
[23] Hollins R C, Williamson C A 2023 Appl. Opt. 62 6218
[24] Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light Sci. Appl. 5 e16144
[25] Hu J Y, Jing M Y, Zhang G F, Qin C B, Xiao L T, Jia S T 2018 Opt. Express 26 20835
[26] Hoang T M, Vahid A, Tuan H D, Hanzo L 2024 IEEE Commun. Surv. Tutor. 26 1830
[27] Illi E, Qaraqe M, Althunibat S, Alhasanat A, Alsafasfeh M, de Ree M, Mantas G, Rodriguez J, Aman W, Al-Kuwari S 2024 IEEE Commun. Surv. Tutor. 26 347
[28] Han Y R, Li W, Zang Y H, Yang C G, Chen R Y, Zhang G F, Qin C B, Hu J Y, Xiao L T 2023 Acta Phys. Sin. 72 160301(in Chinese) [韩彦睿, 李伟, 臧延华, 杨昌钢, 陈瑞云, 张国峰, 秦成兵, 胡建勇, 肖连团2023 72160301]
[29] Rioul O, Magossi J C 2014 Entropy 16 4892
[30] Solonenko M G, Mobley C D 2015 Appl. Opt. 54 5392
[31] Liu X Y, Yang S H, Gao Y Z, Li J, Li C F, Xu Z, Fan C Y 2024 Opt. Commun. 569 130747
计量
- 文章访问数: 169
- PDF下载量: 11
- 被引次数: 0