搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于第一性原理计算单层IrSCl和IrSI的载流子迁移率

张磊 陈起航 曹硕 钱萍

引用本文:
Citation:

基于第一性原理计算单层IrSCl和IrSI的载流子迁移率

张磊, 陈起航, 曹硕, 钱萍

First-principles calculations of carrier mobility in monolayer IrSCl and IrSI

Zhang Lei, Chen Qi-Hang, Cao Shuo, Qian Ping
cstr: 32037.14.aps.73.20241044
PDF
HTML
导出引用
  • 基于密度泛函理论的第一性原理计算方法, 系统研究了单层IrSCl和IrSI材料的载流子输运特性. 声子谱计算无虚频, 表明材料结构稳定, 且分子动力学模拟验证了其在300 K下的热稳定性. 结果显示, 这两种材料均为间接带隙半导体, 且在不同泛函下的带隙计算结果分别为: 单层IrSCl在PBE和HSE06泛函下的带隙.为0.37 eV和1.58 eV, 单层IrSI的带隙为0.23 eV和1.36 eV. 在双轴拉伸应变下, IrSCl和IrSI的带隙逐渐减小. 在应变6%时, 带隙分别降至0.05 eV和0.01 eV (PBE). 基于形变势理论预测, 室温下单层IrSCl和IrSI的最大载流子迁移率分别407.77 cm2/(V·s)和202.64 cm2/(V·s). 同时, 基于玻尔兹曼输运方程的计算结果显示, 室温下单层IrSCl和IrSI的载流子迁移率最大值分别299.15 cm2/(V·s)和286.41 cm2/(V·s). 这些结果表明, IrSCl和IrSI单层材料在纳米电子器件领域具有潜在的应用价值.
    Carrier mobility is a key parameter determining the response speed of charge carriers to electric fields in nanoelectronic devices. This study aims to investigate the charge carrier transport properties of monolayer IrSCl and IrSI. Using first-principles calculations based on density functional theory, we systematically investigate the electronic structure and transport properties of monolayer IrSCl and IrSI. The phonon dispersion calculations indicate that both IrSCl and IrSI exhibit no imaginary frequencies, confirming their structural stability. Furthermore, molecular dynamics simulations demonstrate that these materials maintain thermal stability at room temperature (300 K). The evaluation of the bandgap by using the Perdew-Burke-Ernzerhof (PBE) functional and the hybrid HSE06 functional shows that both IrSCl and IrSI are indirect bandgap semiconductors. The bandgap values for monolayer IrSCl are 0.37 eV and 1.58 eV under the PBE functional and the HSE06 functional, respectively, while those for monolayer IrSI are 0.23 eV and 1.36 eV under the PBE functional and the HSE06 functional, respectively. We further investigate the effects of biaxial tensile strain on the bandgap. The bandgap of IrSCl and IrSI decrease with the increase of strain, respectively reaching 0.05 eV and 0.01 eV under the PBE functional at a strain of 6%, indicating a strain-induced transition to metallic behavior. According to deformation potential theory and the Boltzmann transport equation, we calculate the carrier mobility for each of monolayer IrSCl and IrSI. The predicted maximum carrier mobility at room temperature is 407.77 cm2/(V·s) for monolayer IrSCl, and 202.64 cm2/(V·s) for monolayer IrSI. Additionally, the results from the Boltzmann transport equation show that the highest mobility is 299.15 cm2/(V·s) for IrSCl and 286.41 cm2/(V·s) for IrSI. These findings suggest that both IrSCl and IrSI possess favorable electronic and transport properties, thus they have become promising candidates for future applications in the field of two-dimensional nanoelectronic devices. Notably, the combination of a moderate bandgap and high carrier mobility at room temperature indicates their potential applications in the fields of transistors, sensors, and other electronic components. This study provides valuable insights into the material properties of IrSCl and IrSI, contributing to the design of novel two-dimensional materials for electronic applications.
      通信作者: 钱萍, qianping@ustb.edu.cn
    • 基金项目: 国家重点研发计划(批准号2021YFB3802100)资助的课题.
      Corresponding author: Qian Ping, qianping@ustb.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3802100).
    [1]

    Feng L P, Li A, Wang P C, Liu Z T 2018 J. Phys. Chem. C 42 122Google Scholar

    [2]

    Su Y, Cao S, Shi L B, Qian P 2020 Appl. Surf. Sci. 531 147341Google Scholar

    [3]

    Qu H Z, Zhang S L, Zhou W H, Guo S Y, Zeng H B 2020 IEEE Electron Device Lett. 41 1029Google Scholar

    [4]

    Li Q, Du B D, Gao J Y, Liu J 2023 Appl. Phys. Rev. 10 011402Google Scholar

    [5]

    Guo S Y, Wang Y, Qu H Z, Zhou W H, Ang Y S, Zhang S L, Zeng H B 2024 Phys. Rev. Appl. 21 054016Google Scholar

    [6]

    Shi H, Yang S Y, Wang H P, Ding D P, Hu Y, Qu H Z, Chen C Y, Hu X M, Zhang S L 2024 ACS Appl. Mater. Interfaces 16 39592Google Scholar

    [7]

    Song Y, Pan J B, Zhang Y F, Yang H T, Du S X 2021 J. Phys. Chem. Lett. 12 6007Google Scholar

    [8]

    Whitfield G, Shaw P B 1980 Phys. Rev. B 21 4349Google Scholar

    [9]

    Zunger A 2019 Nature 566 447Google Scholar

    [10]

    Göser O, Paul W, Kahle H G 1990 J. Magn. Magn. Mater. 92 129Google Scholar

    [11]

    Fei R X, Yang L 2014 Nano Lett. 14 2884Google Scholar

    [12]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [13]

    Lang H F, Zhang S Q, Liu Z R 2016 Phys. Rev. B 94 235306Google Scholar

    [14]

    Generazio E R, Spector H N 1979 Phys. Rev. B 20 5162Google Scholar

    [15]

    Shi L B, Zhang Y Y, Xiu X M, Dong H K 2018 Carbon 134 103Google Scholar

    [16]

    Zhang Y J, Cao S, Wang Y Z, Jian X D, Shi L B, Qian P 2021 Phys. Lett. A 401 127340Google Scholar

    [17]

    Poncé S, Jena D, Giustino F 2019 Phys. Rev. B 100 085204Google Scholar

    [18]

    Poncé S, Jena D, Giustino F 2019 Phys. Rev. Lett. 123 096602Google Scholar

    [19]

    Poncé S, Li W, Reichardt S, Giustino F 2020 Rep. Prog. Phys. 83 036501Google Scholar

    [20]

    Alidoosty-Shahraki M, Bashirpour M 2020 IEEE Trans. Electron Devices 67 3459Google Scholar

    [21]

    Shi L B, Cao S, Yang M, You Q, Zhang K C, Bao Y, Zhang Y J, Niu Y Y, Qian P 2019 J. Phys.: Condens. Matter 32 065306Google Scholar

    [22]

    Su Y, Li N, Shi L B, Wang L Z, Qian P 2022 Comput. Mater. Sci. 213 111609Google Scholar

    [23]

    王晓艳, 张鹤鸣, 宋建军, 马建立, 王冠宇, 安久华 2011 60 077205Google Scholar

    Wang X Y, Zhang H M, Song J J, Ma J L, Wang G Y, An J H 2011 Acta Phys. Sin. 60 077205Google Scholar

    [24]

    Hamann D, Schlüter M, Chiang C 1979 Phys. Rev. Lett. 43 1494Google Scholar

    [25]

    Perdew J, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Baroni S, Giannozzi P 2009 AGU Fall Meet. Abstr. 21 395502Google Scholar

    [27]

    Itvinov I V 2006 Appl. Phys. Lett. 89 43Google Scholar

    [28]

    Noffsinger J, Giustino F, Malone B D, Park C H, Louie S G, Cohen M L 2010 Comput. Phys. Commun. 181 2140Google Scholar

  • 图 1  (a)单层IrSCl的晶胞结构. 其中黄色原子表示S, 金黄色原子表示Ir, 绿色原子表示Cl; (b)单层IrSI的晶胞结构, 在该结构中, 黄色原子同样表示S, 金黄色原子同样表示Ir, 紫色原子表示I. 将水平方向定义为x轴正方向, 垂直方向定义为y轴正方向

    Fig. 1.  (a) Unit cell structure of monolayer IrSCl, where the yellow atoms denote sulfur (S), the golden yellow atoms denote iridium (Ir), and the green atoms denote chlorine (Cl); (b) the unit cell structure of monolayer IrSI, with the yellow atoms again representing sulfur (S), the golden yellow atoms representing iridium (Ir), and the purple atoms representing iodine (I). In both figures, the horizontal direction is defined as the positive x-axis, and the vertical direction is defined as the positive y-axis.

    图 2  (a) IrSCl的AIMD结果; (b) IrSI的AIMD结果; (c), (d) IrSCl和IrSI在第1.25, 2.50, 3.75和5.00 ps时的结构状态

    Fig. 2.  (a) The AIMD results for IrSCl; (b) the AIMD results for IrSI; (c), (d) the structural states of IrSCl and IrSI at 1.25, 2.50, 3.75 and 5.00 ps.

    图 3  双轴拉伸下的能带结构图, 其中上面四幅图为IrSCl, 下边四幅图为IrSI, 应变范围为0%—10%, 间隔为2%

    Fig. 3.  Band structure under biaxial tensile strain. The top four panels are for IrSCl, and the bottom four panels are for IrSI, with strain ranging from 0% to 10% in 2% intervals.

    图 4  基于HSE06泛函计算的IrSCl和IrSI能带图 (a) IrSCl; (b) IrSI

    Fig. 4.  Band structure of IrSCl and IrSI based on HSE06 functional calculations: (a) IrSCl; (b) IrSI.

    图 5  IrSCl和IrSI形变势和弹性模量拟合

    Fig. 5.  Fitting of deformation potential (DPT) and elastic modulus for IrSCl and IrSI.

    图 6  (a) IrSCl能带插值前后对比; (b) IrSI能带插值前后对比; (c)声子谱IrSCl插值前后对比; (d) IrSI声子谱插值前后对比

    Fig. 6.  (a) Comparison before and after band interpolation of IrSCl; (b) comparison before and after band interpolation of IrSI; (c) comparison before and after phonon spectrum interpolation of IrSCl; (d) comparison before and after phonon spectrum interpolation of IrSI

    图 7  (a) Wannier插值深度测试; (b) Wannier插值密度测试

    Fig. 7.  (a) Testing the depth of Wannier function interpolation; (b) testing the density of Wannier function interpolation.

    图 8  基于玻尔兹曼输运方程计算得到的不同温度下单层IrSCl和IrSI的载流子迁移率

    Fig. 8.  Calculated temperature-dependent carrier mobilities of monolayer IrSCl and IrSI by using the Boltzmann transport equation.

    表 1  双轴应变下IrSCl和IrSI的有效质量, 电子有效质量计算的是次级导带底的位置, 空穴有效质量计算的是价带顶位置

    Table 1.  Effective masses of IrSCl and IrSI under biaxial strain. The effective mass of electrons is at the CBM' point, and the effective mass of holes is at the VBM point

    $\Delta \varepsilon$ $m_{x, {\rm{h}}} (m_{\mathrm{e}} )$ $m_{x, {\rm{e}}} (m_{\mathrm{e}} )$ $m_{y, {\rm{h}}} (m_{\mathrm{e}} )$ $m_{y, {\rm{e}}} (m_{\mathrm{e}} )$
    IrSCl 0% 1.839 3.300 0.232 0.179
    2% 1.781 3.470 0.223 0.181
    4% 1.761 3.690 0.304 0.187
    6% 1.785 3.861 0.379 0.196
    IrSI 0% 2.295 1.337 0.244 0.238
    2% 2.187 1.397 0.260 0.224
    4% 2.126 1.452 0.279 0.215
    6% 2.134 1.512 0.300 0.205
    下载: 导出CSV

    表 2  基于形变势理论计算单层IrSCl和IrSI的弹性模量(J/m2)、形变势(eV)和载流子迁移率(cm2/(V·s))

    Table 2.  Based on the deformation potential theory, the elastic modulus (J/m2), deformation potential (eV), and carrier mobility (cm2/(V·s)) of monolayer IrSCl and IrSI were calculated.

    $C_{2\mathrm{D}, x} $$C_{2\mathrm{D}, y} $$E_{{\rm{h}}, x} $$E_{{\rm{e}}, x} $$E_{{\rm{h}}, y} $$E_{{\rm{e}}, y} $$\mu _{{\rm{h}}, x} $$\mu _{{\rm{e}}, x} $$\mu _{{\rm{h}}, y} $$\mu _{{\rm{e}}, y} $
    IrSCl114.6167.23.482.937.614.4168.5112.84407.77161.88
    IrSI90173.84.867.1410.0213.6647.4950.14202.64148.9
    下载: 导出CSV

    表 3  基于玻尔兹曼输运方程计算得到的不同温度下单层IrSCl和IrSI的载流子迁移率

    Table 3.  Calculated temperature-dependent carrier mobilities of monolayer IrSCl and IrSI by using the Boltzmann transport equation.

    Temperature/K IrSCl IrSI
    $\mu _{{\rm{h}}, x} $ $\mu _{{\rm{h}}, y} $ $\mu _{{\rm{e}}, x} $ $\mu _{{\rm{e}}, y} $ $\mu _{{\rm{h}}, x} $ $\mu _{{\rm{h}}, y} $ $\mu _{{\rm{e}}, x} $ $\mu _{{\rm{e}}, y} $
    200 49.41 520.94 18.70 244.38 36.11 354.48 11.48 125.45
    250 33.86 372.70 11.29 176.83 29.55 313.42 9.59 106.41
    300 26.20 299.15 7.57 141.39 25.44 286.41 8.44 94.75
    350 21.80 257.10 5.44 119.99 22.58 266.34 8.63 86.15
    400 18.98 230.42 4.09 105.65 20.44 250.04 6.99 79.58
    450 17.00 211.99 3.18 95.26 18.73 235.97 6.45 73.77
    500 15.51 198.26 2.54 87.28 17.32 223.31 5.98 68.61
    550 14.34 187.32 2.07 80.89 16.11 211.64 5.56 63.96
    600 13.36 178.08 1.72 75.61 15.05 200.68 5.18 59.72
    下载: 导出CSV
    Baidu
  • [1]

    Feng L P, Li A, Wang P C, Liu Z T 2018 J. Phys. Chem. C 42 122Google Scholar

    [2]

    Su Y, Cao S, Shi L B, Qian P 2020 Appl. Surf. Sci. 531 147341Google Scholar

    [3]

    Qu H Z, Zhang S L, Zhou W H, Guo S Y, Zeng H B 2020 IEEE Electron Device Lett. 41 1029Google Scholar

    [4]

    Li Q, Du B D, Gao J Y, Liu J 2023 Appl. Phys. Rev. 10 011402Google Scholar

    [5]

    Guo S Y, Wang Y, Qu H Z, Zhou W H, Ang Y S, Zhang S L, Zeng H B 2024 Phys. Rev. Appl. 21 054016Google Scholar

    [6]

    Shi H, Yang S Y, Wang H P, Ding D P, Hu Y, Qu H Z, Chen C Y, Hu X M, Zhang S L 2024 ACS Appl. Mater. Interfaces 16 39592Google Scholar

    [7]

    Song Y, Pan J B, Zhang Y F, Yang H T, Du S X 2021 J. Phys. Chem. Lett. 12 6007Google Scholar

    [8]

    Whitfield G, Shaw P B 1980 Phys. Rev. B 21 4349Google Scholar

    [9]

    Zunger A 2019 Nature 566 447Google Scholar

    [10]

    Göser O, Paul W, Kahle H G 1990 J. Magn. Magn. Mater. 92 129Google Scholar

    [11]

    Fei R X, Yang L 2014 Nano Lett. 14 2884Google Scholar

    [12]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [13]

    Lang H F, Zhang S Q, Liu Z R 2016 Phys. Rev. B 94 235306Google Scholar

    [14]

    Generazio E R, Spector H N 1979 Phys. Rev. B 20 5162Google Scholar

    [15]

    Shi L B, Zhang Y Y, Xiu X M, Dong H K 2018 Carbon 134 103Google Scholar

    [16]

    Zhang Y J, Cao S, Wang Y Z, Jian X D, Shi L B, Qian P 2021 Phys. Lett. A 401 127340Google Scholar

    [17]

    Poncé S, Jena D, Giustino F 2019 Phys. Rev. B 100 085204Google Scholar

    [18]

    Poncé S, Jena D, Giustino F 2019 Phys. Rev. Lett. 123 096602Google Scholar

    [19]

    Poncé S, Li W, Reichardt S, Giustino F 2020 Rep. Prog. Phys. 83 036501Google Scholar

    [20]

    Alidoosty-Shahraki M, Bashirpour M 2020 IEEE Trans. Electron Devices 67 3459Google Scholar

    [21]

    Shi L B, Cao S, Yang M, You Q, Zhang K C, Bao Y, Zhang Y J, Niu Y Y, Qian P 2019 J. Phys.: Condens. Matter 32 065306Google Scholar

    [22]

    Su Y, Li N, Shi L B, Wang L Z, Qian P 2022 Comput. Mater. Sci. 213 111609Google Scholar

    [23]

    王晓艳, 张鹤鸣, 宋建军, 马建立, 王冠宇, 安久华 2011 60 077205Google Scholar

    Wang X Y, Zhang H M, Song J J, Ma J L, Wang G Y, An J H 2011 Acta Phys. Sin. 60 077205Google Scholar

    [24]

    Hamann D, Schlüter M, Chiang C 1979 Phys. Rev. Lett. 43 1494Google Scholar

    [25]

    Perdew J, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Baroni S, Giannozzi P 2009 AGU Fall Meet. Abstr. 21 395502Google Scholar

    [27]

    Itvinov I V 2006 Appl. Phys. Lett. 89 43Google Scholar

    [28]

    Noffsinger J, Giustino F, Malone B D, Park C H, Louie S G, Cohen M L 2010 Comput. Phys. Commun. 181 2140Google Scholar

  • [1] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料的预测.  , 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] 李欣悦, 高国翔, 高强, 刘春生, 叶小娟. 二维BeB2作为镁离子电池阳极材料的理论研究.  , 2024, 73(11): 118201. doi: 10.7498/aps.73.20240134
    [3] 张冷, 张鹏展, 刘飞, 李方政, 罗毅, 侯纪伟, 吴孔平. 基于形变势理论的掺杂计算Sb2Se3空穴迁移率.  , 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [4] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究.  , 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [5] 陈思钰, 叶小娟, 刘春生. 二维锗醚在钠离子电池方面的理论研究.  , 2022, 71(22): 228202. doi: 10.7498/aps.71.20220572
    [6] 宋蕊, 王必利, 冯凯, 王黎, 梁丹丹. 二维VOBr2单层的结构畸变及其磁性和铁电性.  , 2022, 71(3): 037101. doi: 10.7498/aps.71.20211516
    [7] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究.  , 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [8] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算.  , 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [9] 宋蕊. 二维VOBr2单层的结构畸变及其磁性和铁电性研究.  , 2021, (): . doi: 10.7498/aps.70.20211516
    [10] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究.  , 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [11] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究.  , 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [12] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析.  , 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [13] 底琳佳, 戴显英, 宋建军, 苗东铭, 赵天龙, 吴淑静, 郝跃. 基于锡组分和双轴张应力调控的临界带隙应变Ge1-xSnx能带特性与迁移率计算.  , 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [14] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算.  , 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
    [15] 张理勇, 方粮, 彭向阳. 单层二硫化钼多相性质及相变的第一性原理研究.  , 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [16] 董海明. 低温下二硫化钼电子迁移率研究.  , 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [17] 刘越颖, 周铁戈, 路远, 左旭. 第一主族元素(Li,Na,K)和第二主族元素(Be,Mg,Ca) 掺杂二维六方氮化硼单层的第一性原理计算研究.  , 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [18] 张金风, 王平亚, 薛军帅, 周勇波, 张进成, 郝跃. 高电子迁移率晶格匹配InAlN/GaN材料研究.  , 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [19] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究.  , 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [20] 许雪梅, 彭景翠, 李宏建, 瞿述, 罗小华. 载流子迁移率对单层有机发光二极管复合效率的影响.  , 2002, 51(10): 2380-2385. doi: 10.7498/aps.51.2380
计量
  • 文章访问数:  576
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-27
  • 修回日期:  2024-09-11
  • 上网日期:  2024-09-26
  • 刊出日期:  2024-11-05

/

返回文章
返回
Baidu
map