搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于类电磁诱导透明效应的极化转换滤波器

王哲飞 吴杰 万发雨 曾庆生 侯建强 傅佳辉 吴群 宋明歆 TayebA. Denidni

引用本文:
Citation:

基于类电磁诱导透明效应的极化转换滤波器

王哲飞, 吴杰, 万发雨, 曾庆生, 侯建强, 傅佳辉, 吴群, 宋明歆, TayebA. Denidni

Polarization conversion filter based on electromagnetically induced transparency-like effect

Wang Zhe-Fei, Wu Jie, Wan Fa-Yu, Zeng Qing-Sheng, Hou Jian-Qiang, Fu Jia-Hui, Wu Qun, Song Ming-Xin, Tayeb A. Denidni
cstr: 32037.14.aps.73.20240632
PDF
HTML
导出引用
  • 在太赫兹频段基于类电磁诱导透明效应(electromagnetically induced transparency, EIT)提出了一种高效率极化转化滤波器, 通过非对称结构激励了多能级明模路径, 在传统EIT干涉效应的基础上, 获得了正交的圆极化转换窗口. 通过两组具有相似共振频率的明模相互干涉产生透射窗口, 然后构造非对称结构来实现TE和TM极化下的透射窗口偏移, 从而实现双频点极化转换. 该超材料的单元结构由4个开口T型金属谐振组成. 通过分析表面电流分布、频率响应特性以及入射角特性, 探究了其工作机理. 研究结果显示, 该设计在不同极化下实现了电磁诱导透明现象. 随后, 基于两个入射极化的EIT共振, 在0.692 THz处实现了线极化到右旋圆极化转换和0.782 THz处实现了线极化到左旋圆极化转换, 透射系数分别为0.7和0.68. 这种基于EIT的极化转化具有低损耗和超薄的特点, 在紧凑型天线、衍生雷达相控阵和军事工业探测器领域有潜在应用价值.
    Owing to the large losses in the conversion process of traditional polarization converters, there is an increasing demand for metasurfaces with excellent transmission performance. In this work, an efficient polarization conversion metasurface is proposed based on electromagnetically induced transparency-like (EIT-like) effect in the terahertz band. The multi-level bright mode paths are excited by an asymmetric structure to obtain orthogonal circular polarization conversion windows. The transmission window is generated by the mutual interference of two sets of bright modes with similar resonant frequencies. Then an asymmetric structure is constructed to achieve transmission window shift under TE polarization and TM polarization, thereby realizing dual-frequency polarization conversion. The metamaterial unit structure consists of four open metal resonant rings and four metal resonant strips. The working mechanism is explored by analyzing the surface current distribution, frequency response, and incident angle characteristics. The results show that electromagnetically induced transparency can be achieved under different polarizations. Furthermore, based on the EIT resonance between the two incident polarizations, the conversion from linear polarization to right-hand circular polarization is achieved at 0.692 THz, and the conversion from linear polarization to left-hand circular polarization is realized at 0.782 THz, transmission coefficients are 0.7 and 0.68 respectively. According to the Stokes parameters, the corresponding ellipticity η values are 96% and 98%, respectively. This EIT-based polarization conversion metasurface with low loss and ultra-thin characteristics has great potential applications in compact antennas, derived radar phased arrays, and military detectors.
      通信作者: 宋明歆, songmingxin@126.com
    • 基金项目: 中国博士后科学基金(批准号: 2023M732027)、江苏省科协青年科技人才托举工程(批准号: JSTJ-2023-XH034)和江苏省高等学校自然科学研究面上项目(批准号: 23KJB510011)资助的课题.
      Corresponding author: Song Ming-Xin, songmingxin@126.com
    • Funds: Projects supported by the China Postdoctoral Science Foundation (Grant No. 2023M732027), the Association for Science and Technology Youth Talent Promotion Program of Jiangsu Province, China (Grant No. JSTJ-2023-XH034), and the Universities Natural Science Research Program of Jiangsu Province, China (Grant No. 23KJB510011).
    [1]

    Zheng D, Lin Y S 2020 Adv. Mater. Technol. 5 202000584Google Scholar

    [2]

    Mutlu M, Ozbay E 2012 Appl. Phys. Lett. 100 051909Google Scholar

    [3]

    Yan D, Wang B B, Bai Z Y, Li W B 2020 Opt. Express 28 9677Google Scholar

    [4]

    Li A D, Chen W J, Wei H, Lu G W, Alù A, Qiu C W, Chen L 2022 Phys. Rev. Lett. 129 127401Google Scholar

    [5]

    Huang Z R, Zheng Y Q, Li J H, Cheng Y Z, Wang J, Zhou Z K, Chen L 2023 Nano. Lett. 23 10991Google Scholar

    [6]

    王哲飞, 李超, 万发雨, 曾庆生, 傅佳辉, 吴群, 宋明歆 2024 光学学报 44 1624002Google Scholar

    Wang Z F, Li C, Wan F Y, Zeng Q S, Fu J H, Wu Q, Song M X 2024 Acta Opt. Sin. 44 1624002Google Scholar

    [7]

    Guan D F, You P, Zhang Q, Xiao K, Yong S W 2017 IEEE Trans. Microw. Theory Tech. 65 4925Google Scholar

    [8]

    Liang D C, Zhang H F, Gu J Q, Li Y F, Tian Z, Ouyang C M, Han J G, Zhang W L 2017 IEEE J. Select. Topics Quantum Electron. 23 4700907Google Scholar

    [9]

    Deng Y D, Song Z Y 2020 Opt. Mater. 105 109972Google Scholar

    [10]

    Li F, Zhang T, Mao M, Zhang H F 2020 J. Opt. 22 095106Google Scholar

    [11]

    Prakash D, Gupta N 2022 Int. J. Microw. Wirel. Technol. 14 19Google Scholar

    [12]

    Han L, Tan Q L, Gan Y, Zhang W D, Xiong J J 2020 Results Phys. 19 103377Google Scholar

    [13]

    Wang Q, Kuang K L, Gao H X, Chu S W, Yu L, Peng W 2021 Nanomaterials 11 1350Google Scholar

    [14]

    Sarkar R, Devi K M, Ghindani D, Prabhu S S, Chowdhury D R, Kumar G 2020 J. Opt. 22 035105Google Scholar

    [15]

    Li H M, Liu S B, Liu S Y, Wang S Y, Zhang H F, Bian B R, Kong X K 2015 Appl. Phys. Lett. 106 114101Google Scholar

    [16]

    Li H M, Liu S B, Liu S Y, Wang S Y, Ding G W, Yang H, Yu Z Y, Zhang H F 2015 Appl. Phys. Lett. 106 083511Google Scholar

    [17]

    Srijan D, Lalita U 2023 NDT E. Int. 139 102908Google Scholar

    [18]

    Lang T T, Yu Z Y, Zhang J H, Hong Z, Liu J J, Wang P 2023 Sensor Actuat. A-Phys. 360 114522Google Scholar

    [19]

    Zhu L, Dong L, Guo J, Meng F Y, He X J, Zhao C H, Wu Q 2018 Plasmonics 13 1971Google Scholar

    [20]

    Yang D, Shen Z Y, Xia Y Q 2021 Appl. Phys. B 127 87Google Scholar

    [21]

    Gao C J, Guo Z H, Sun Y Z, Zhang H F 2022 Opt. Laser Technol. 151 108006Google Scholar

    [22]

    Yang Y S, Guan D F, Fu Y F, Gu Z Y, Zhang J D, Qian Z P, Wu W 2024 IEEE Antenn. Wirel. Pr. 23 1035Google Scholar

    [23]

    Khanikaev B, Mousavi S H, Wu C H, Dabidian N, Alici K B, Shvets G 2012 Opt. Commun. 285 3423Google Scholar

    [24]

    Sun Y Z, Zhang D, Zhang H F 2022 Opt. Express 30 30574Google Scholar

    [25]

    Meng D J, Wang S Y, Sun X L, Gong R Z, Chen C H 2014 Appl. Phys. Lett. 104 261902Google Scholar

  • 图 1  所提出的单元结构 (a) 功能示意图; (b) 单元结构图

    Fig. 1.  Proposed unit structure: (a) Functional diagram; (b) cell structure diagram.

    图 2  不同单元结构的透射谱 (a) TM极化波下的不同基本结构透射谱、表面电流以及磁场图分布图; (b) TE极化波下的不同结构透射谱、表面电流以及磁场图分布图; (c) 整体结构的透射谱; (d) 类EIT效应的能级系统

    Fig. 2.  Transmission spectra of different unit structures: (a) Transmission spectra, surface currents, and magnetic field maps of different basic structures under TM polarized waves; (b) transmission spectra, surface currents, and magnetic field maps of different structures under TE polarized waves; (c) transmission spectrum of the overall structure; (d) energy level systems of class EIT effects.

    图 3  磁场以及电流图

    Fig. 3.  Magnetic field (absolute value) and current diagram.

    图 4  极化转换点的表面电流以及磁场图

    Fig. 4.  Surface current and magnetic field (absolute value) of the polarization transition point.

    图 5  重要指标图 (a) 透射曲线和相位; (b) 透射曲线的轴比; (c) 透射曲线的椭圆度; (d) 透射曲线的极化方位角

    Fig. 5.  Important indicators: (a) Transmission curve and phase; (b) axial ratio of transmission curve; (c) ellipticity of the transmission curve; (d) polarization azimuth of the transmission curve.

    图 6  极化转换示意图 (a) 45°线极化入射波; (b) 0.692 THz透射波模拟极化; (c) 0.782 THz透射波模拟极化

    Fig. 6.  Schematic diagram of polarization conversion: (a) 45° linearly polarized incident wave; (b) simulated polarization of 0.692 THz transmitted wave; (c) simulated polarization of 0.782 THz transmitted wave.

    图 7  不同入射角度所对应透射谱的变化

    Fig. 7.  Changes of transmission spectrum corresponding to different incidence angles.

    Baidu
  • [1]

    Zheng D, Lin Y S 2020 Adv. Mater. Technol. 5 202000584Google Scholar

    [2]

    Mutlu M, Ozbay E 2012 Appl. Phys. Lett. 100 051909Google Scholar

    [3]

    Yan D, Wang B B, Bai Z Y, Li W B 2020 Opt. Express 28 9677Google Scholar

    [4]

    Li A D, Chen W J, Wei H, Lu G W, Alù A, Qiu C W, Chen L 2022 Phys. Rev. Lett. 129 127401Google Scholar

    [5]

    Huang Z R, Zheng Y Q, Li J H, Cheng Y Z, Wang J, Zhou Z K, Chen L 2023 Nano. Lett. 23 10991Google Scholar

    [6]

    王哲飞, 李超, 万发雨, 曾庆生, 傅佳辉, 吴群, 宋明歆 2024 光学学报 44 1624002Google Scholar

    Wang Z F, Li C, Wan F Y, Zeng Q S, Fu J H, Wu Q, Song M X 2024 Acta Opt. Sin. 44 1624002Google Scholar

    [7]

    Guan D F, You P, Zhang Q, Xiao K, Yong S W 2017 IEEE Trans. Microw. Theory Tech. 65 4925Google Scholar

    [8]

    Liang D C, Zhang H F, Gu J Q, Li Y F, Tian Z, Ouyang C M, Han J G, Zhang W L 2017 IEEE J. Select. Topics Quantum Electron. 23 4700907Google Scholar

    [9]

    Deng Y D, Song Z Y 2020 Opt. Mater. 105 109972Google Scholar

    [10]

    Li F, Zhang T, Mao M, Zhang H F 2020 J. Opt. 22 095106Google Scholar

    [11]

    Prakash D, Gupta N 2022 Int. J. Microw. Wirel. Technol. 14 19Google Scholar

    [12]

    Han L, Tan Q L, Gan Y, Zhang W D, Xiong J J 2020 Results Phys. 19 103377Google Scholar

    [13]

    Wang Q, Kuang K L, Gao H X, Chu S W, Yu L, Peng W 2021 Nanomaterials 11 1350Google Scholar

    [14]

    Sarkar R, Devi K M, Ghindani D, Prabhu S S, Chowdhury D R, Kumar G 2020 J. Opt. 22 035105Google Scholar

    [15]

    Li H M, Liu S B, Liu S Y, Wang S Y, Zhang H F, Bian B R, Kong X K 2015 Appl. Phys. Lett. 106 114101Google Scholar

    [16]

    Li H M, Liu S B, Liu S Y, Wang S Y, Ding G W, Yang H, Yu Z Y, Zhang H F 2015 Appl. Phys. Lett. 106 083511Google Scholar

    [17]

    Srijan D, Lalita U 2023 NDT E. Int. 139 102908Google Scholar

    [18]

    Lang T T, Yu Z Y, Zhang J H, Hong Z, Liu J J, Wang P 2023 Sensor Actuat. A-Phys. 360 114522Google Scholar

    [19]

    Zhu L, Dong L, Guo J, Meng F Y, He X J, Zhao C H, Wu Q 2018 Plasmonics 13 1971Google Scholar

    [20]

    Yang D, Shen Z Y, Xia Y Q 2021 Appl. Phys. B 127 87Google Scholar

    [21]

    Gao C J, Guo Z H, Sun Y Z, Zhang H F 2022 Opt. Laser Technol. 151 108006Google Scholar

    [22]

    Yang Y S, Guan D F, Fu Y F, Gu Z Y, Zhang J D, Qian Z P, Wu W 2024 IEEE Antenn. Wirel. Pr. 23 1035Google Scholar

    [23]

    Khanikaev B, Mousavi S H, Wu C H, Dabidian N, Alici K B, Shvets G 2012 Opt. Commun. 285 3423Google Scholar

    [24]

    Sun Y Z, Zhang D, Zhang H F 2022 Opt. Express 30 30574Google Scholar

    [25]

    Meng D J, Wang S Y, Sun X L, Gong R Z, Chen C H 2014 Appl. Phys. Lett. 104 261902Google Scholar

  • [1] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面.  , 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [2] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器.  , 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [3] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面.  , 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [4] 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器.  , 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [5] 王明照, 王少杰, 许河秀. 基于剪纸方法的一种可重构线极化转换空间序构超表面.  , 2021, 70(15): 154101. doi: 10.7498/aps.70.20210188
    [6] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器.  , 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [7] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华. 基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器.  , 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [8] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器.  , 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [9] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计.  , 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [10] 郭畅, 张岩. 利用波矢滤波超表面实现超衍射成像.  , 2017, 66(14): 147804. doi: 10.7498/aps.66.147804
    [11] 金柯, 刘永强, 韩俊, 杨崇民, 王颖辉, 王慧娜. 基于超材料的中波红外宽带偏振转换研究.  , 2017, 66(13): 134201. doi: 10.7498/aps.66.134201
    [12] 韩江枫, 曹祥玉, 高军, 李思佳, 张晨. 一种基于超材料的宽带、反射型90极化旋转体设计.  , 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [13] 韩松, 杨河林. 双向多频超材料吸波器的设计与实验研究.  , 2013, 62(17): 174102. doi: 10.7498/aps.62.174102
    [14] 丁敏, 薛晖, 吴博, 孙兵兵, 刘政, 黄志祥, 吴先良. 基于电磁超材料的两种等效参数提取算法的比较分析.  , 2013, 62(4): 044218. doi: 10.7498/aps.62.044218
    [15] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器.  , 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [16] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器.  , 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [17] 吴翔, 裴志斌, 屈绍波, 徐卓, 柏鹏, 王甲富, 王新华, 周航. 具有极化选择特性的超材料频率选择表面的设计.  , 2011, 60(11): 114201. doi: 10.7498/aps.60.114201
    [18] 赵冬梅, 施宇蕾, 周庆莉, 李磊, 孙会娟, 张存林. 基于人工复合材料的太赫兹波双波段滤波.  , 2011, 60(9): 093301. doi: 10.7498/aps.60.093301
    [19] 相建凯, 马忠洪, 赵延, 赵晓鹏. 可见光波段超材料的平面聚焦效应.  , 2010, 59(6): 4023-4029. doi: 10.7498/aps.59.4023
    [20] 付非亚, 陈微, 周文君, 刘安金, 邢名欣, 王宇飞, 郑婉华. 纳米三明治结构光子超材料中电磁场振荡行为研究.  , 2010, 59(12): 8579-8583. doi: 10.7498/aps.59.8579
计量
  • 文章访问数:  338
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-07
  • 修回日期:  2024-08-02
  • 上网日期:  2024-08-23
  • 刊出日期:  2024-09-20

/

返回文章
返回
Baidu
map