搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ge掺杂增强Ruddlesden-Popper结构准二维Sr3Sn2O7陶瓷杂化非本征铁电性的物理机制

肖志峰 王守宇 戴雅婷 康新淼 张振华 刘卫芳

引用本文:
Citation:

Ge掺杂增强Ruddlesden-Popper结构准二维Sr3Sn2O7陶瓷杂化非本征铁电性的物理机制

肖志峰, 王守宇, 戴雅婷, 康新淼, 张振华, 刘卫芳

Physical mechanism of Ge doping enhanced Ruddlesden-Popper structure quasi-2D Sr3Sn2O7 ceramic hybrid improper ferroelectricity

Xiao Zhi-Feng, Wang Shou-Yu, Dai Ya-Ting, Kang Xin-Miao, Zhang Zhen-Hua, Liu Wei-Fang
PDF
HTML
导出引用
  • 准二维的杂化非本征铁电体在实现强磁电耦合的单相室温多铁性方面具有很大的潜力, 然而此类陶瓷样品通常有着较高的矫顽场和较低的剩余极化强度, 严重阻碍了对其的研究和应用. 本文成功制备了质量高且单相性较好的具有准二维结构的双层R-P(Ruddlesden-Popper)型氧化物Sr3Sn2–xGexO7陶瓷样品, 观察到了较高的剩余极化和与Sr3Sn2O7单晶接近的矫顽场. 微量Ge元素对B位Sn掺杂后极化强度显著增强, 同时进一步降低了Sr3Sn2O7样品的矫顽场. 结合晶格动力学研究, 对样品的拉曼和红外光谱进行标定, 得出掺杂样品铁电性能的增强可能源于氧八面体倾侧幅度的增大和旋转幅度减小. Berry相位法和玻恩有效电荷模型进一步证实了铁电性能的增强. 通过紫外可见光光度计测试得到Sr3Sn2O7样品的光学带隙为3.91 eV, 采用Becke-Johnson势结合局部密度近似(MBJ-LDA)所计算的结果与实验基本一致. 总之, 这项研究为此类杂化非本征铁电体的制备及铁电性能的调控提供了参考, 有望促进铁电陶瓷在各种电容器和非易失性存储器件中的广泛应用.
    Hybrid improper ferroelectricity with quasi-two-dimensional (quasi-2D) structure has attracted much attention recently due to its great potential in realizing strong magnetoelectric coupling and room-temperature multiferroicity in a single phase. However, recent studies show that there appears high coercive field and low remnant polarization in ceramics, which severely hinders the applications of this material. In this work, high-quality Sr3Sn2O7 and Sr3Sn1.99Ge0.01O7 ceramics with a Ruddlesden-Popper (R-P) structure are successfully prepared, and their crystal structures and electrical properties are investigated in detail. It is found that the Sr3Sn2O7 ceramic exhibits a lower coercive field that is close to that of Sr3Sn2O7 single crystal. Moreover, via a small amount of Ge doping, the polarization reaches 0.34 μC/cm2 for Sr3Sn2O7 and 0.61 μC/cm2 for Sr3Sn1.99Ge0.01O7. Combining crystal lattice dynamic studies, we analyze the Raman and infrared responses of the samples, showing the information about the tilting and rotation of the oxygen octahedra in the samples. The improved ferroelectricity after doping may be attributed to the increased amplitude of the tilt mode and the reduced amplitude of rotation mode. Besides, the enhanced ferroelectric properties through Ge doping and its mechanism are further investigated by the Berry phase approach and the Born effective charge method. Furthermore, via the UV-visible spectra, the optical bandgap is determined to be 3.91 eV for Sr3Sn2O7 ceramic and 3.95 eV for Sr3Sn1.99Ge0.01O7 ceramic. Using the Becke-Johnson potential combined with the local density approximation correlation, the bandgap is calculated and is found to be in close agreement with the experimental result. And the electronic excitations can be assigned to the charge transfer excitation from O 2p to Sn 5s (Ge 4s). The effects of Ge doping on the ability of Sr3Sn2O7 to gain and lose electrons and the bonding strength of Sn-O bond are analyzed via two-dimensional charge density difference. In conclusion, this study provides insights into the synthesis method and modulation of ferroelectric properties of hybrid improper ferroelectrics Sr3Sn2O7, potentially facilitating their widespread applications in various capacitors and non-volatile memory devices.
      通信作者: 王守宇, sywang@tjnu.edu.cn ; 刘卫芳, wfliu@tju.edu.cn
    • 基金项目: 天津市自然科学基金(批准号: 20JCZDJC00210)和国家自然科学基金(批准号: 51572193)资助的课题.
      Corresponding author: Wang Shou-Yu, sywang@tjnu.edu.cn ; Liu Wei-Fang, wfliu@tju.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Tianjin, China (Grant No. 20JCZDJC00210) and the National Natural Science Foundation of China (Grant No. 51572193).
    [1]

    Scott J F 2007 Science 315 954Google Scholar

    [2]

    Haertling G H 1999 J. Am. Ceram. Soc. 82 797Google Scholar

    [3]

    Benedek N A, Fennie C J 2011 Phys. Rev. Lett. 106 107204Google Scholar

    [4]

    刘小强, 吴淑雅, 朱晓莉, 陈湘明 2018 67 50Google Scholar

    Liu X Q, Wu S Y, Zhu X L, Chen X M 2018 Acta Phys. Sin. 67 50Google Scholar

    [5]

    Zhang H W, Yuan K J, Tang H, Zheng P F, Zhou W, Wang C, Liu W F 2023 J. Solid State Chem. 325 124180Google Scholar

    [6]

    Wu X X, Wang S Y, Wong-Ng W, Gu Q, Jiang Y, Wang C, Ma S, Liu W F 2021 J. Adv. Ceram. 10 120Google Scholar

    [7]

    Wang Y Z, Huang F T, Luo X, Gao B, Cheong S W 2017 Adv. Mater. 29 1601288Google Scholar

    [8]

    Xu X H, Wang Y Z, Huang F T, Du K, Nowadnick E A, Cheong S W 2020 Adv. Funct. Mater. 30 2003623Google Scholar

    [9]

    Gu Q, Liu W F, Wong-Ng W, Wu X X, Wang C, Zhou W, Wang S Y 2021 J. Electroceram. 47 42Google Scholar

    [10]

    Lu J J, Liu X Q, Ma X, Fu M S, Yuan A, Wu Y J, Chen X M 2019 J. Appl. Phys. 125 044101Google Scholar

    [11]

    Chen B H, Sun T L, Liu X Q, Zhu X L, Tian H, Chen X M 2020 Appl. Phys. Lett. 116 042903Google Scholar

    [12]

    Chen Q S, Zhang B H, Chen B H, Liu X Q, Chen X M 2022 J. Appl. Phys. 131 184102Google Scholar

    [13]

    Wu H D, Gao Z Y, Cai W, Gao R, Chen D, Chen G, Deng X, Wang Z, Lei X, Wang X Y, Fu C 2022 Mater. Today Chem. 26 101226Google Scholar

    [14]

    Fukasawa I, Maruyama Y, Yoshida S, Fujita K, Takahashi H, Ohgaki M, Nagao M, Watauchi S, Gopalan V, Tanaka K, Tanaka I 2023 J. Cryst. Growth 615 127241Google Scholar

    [15]

    Xiao Z F, Xiao T Q, Wang S Y, Huang S, Wei B D, Liu W F 2024 J. Am. Ceram. Soc. 107 334Google Scholar

    [16]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [17]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [18]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [19]

    Becke A D, Johnson E R 2006 J. Chem. Phys. 124 221101Google Scholar

    [20]

    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515Google Scholar

    [21]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [22]

    Resta R 1994 Rev. Mod. Phys. 66 899Google Scholar

    [23]

    Meyer B, Vanderbilt D 2002 Phys. Rev. B 65 104111Google Scholar

    [24]

    Kroumova E, Aroyo M I, Perez-Mato J M, Kirov A, Capillas C, Ivantchev S, Wondratschek H 2003 Phase Transitions 76 155Google Scholar

    [25]

    Skelton J M, Burton L A, Jackson A J, Oba F, Parker S C, Walsh A 2017 Phys. Chem. Chem. Phys. 19 12452Google Scholar

    [26]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272Google Scholar

    [27]

    Wiles D B, Young R A 1981 J. Appl. Crystallogr. 14 149Google Scholar

    [28]

    Lufaso M W, Woodward P M 2004 Acta Crystallogr. , Sect. B 60 10Google Scholar

    [29]

    Liu X Q, Chen B H, Lu J J, Hu Z Z, Chen X M 2018 Appl. Phys. Lett. 113 242904Google Scholar

    [30]

    Fawcett I D, Kim E, Greenblatt M, Croft M, Bendersky L A 2000 Phys. Rev. B 62 6485Google Scholar

    [31]

    Huang L F, Lu X Z, Rondinelli J M 2016 Phys. Rev. Lett. 117 115901Google Scholar

    [32]

    Mulder A T, Benedek N A, Rondinelli J M, Fennie C J 2013 Adv. Funct. Mater. 23 4810Google Scholar

    [33]

    黄昆 2012 固体物理学 (北京: 高等教育出版社) 第78页

    Huang K 2012 Solid State Physics (Beijing: Higher Education Press) p78

    [34]

    Smith K A, Ramkumar S P, Harms N C, Clune A J, Xu X, Cheong S W, Liu Z, Nowadnick E A, Musfeldt J L 2021 Phys. Rev. B 104 064106Google Scholar

    [35]

    Yuan K J, Zhang H W, Gu Q, Xiao T Q, Li Z Y, Wong-Ng W K, Zhou W, Wang C, Wang S Y, Liu W F 2023 J. Am. Ceram. Soc. 106 2455Google Scholar

    [36]

    Sun X F, Yang X M, Xu C, Gan X C, Zhang W J, Gao Z R, Cai H L, Wu X S 2019 Chem. Phys. Lett. 728 74Google Scholar

    [37]

    Singh M K, Karan N K, Katiyar R S, Scott J F, Jang H M 2008 J. Phys. : Condens. Matter 20 055210Google Scholar

    [38]

    Spaldin N A 2012 J. Solid State Chem. 195 2Google Scholar

    [39]

    Neaton J B, Ederer C, Waghmare U V, Spaldin N A, Rabe K M 2005 Phys. Rev. B 71 014113Google Scholar

    [40]

    Filip L D, Plugaru N, Pintilie L 2019 Modell. Simul. Mater. Sci. Eng. 27 045008Google Scholar

    [41]

    Kamimura S, Obukuro Y, Matsushima S, Nakamura H, Arai M, Xu C N 2015 J. Solid State Chem. 232 163Google Scholar

    [42]

    Tauc J, Grigorovici R, Vancu A 1966 Phys. Status. 15 627Google Scholar

    [43]

    Kamimura S, Yamada H, Xu C N 2012 Appl. Phys. Lett. 101 091113Google Scholar

    [44]

    Kumaradhas P, Gopalan R S, Kulkarni G U 1999 Proc. Indian Acad. Sci. (Chem. Sci.) 111 569Google Scholar

  • 图 1  (a) Sr3Sn2–xGexO7 (x = 0, 0.01)的室温XRD图谱; (b) Sr3Sn2O7的晶体结构示意图; (c), (d)分别为氧八面体的倾侧角和旋转角

    Fig. 1.  (a) The XRD patterns of Sr3Sn2–xGexO7(x = 0, 0.01); (b) crystal structure of Sr3Sn2O7; (c), (d) are the oxygen octahedral tilt angle and rotation angle respectively.

    图 2  Sr3Sn2O7的声子色散谱, 及原子和方向分辨的声子态密度(gν)谱

    Fig. 2.  Phonon dispersions, atom and direction-resolved phonon density of states (gν).

    图 3  Sr3Sn2O7和Sr3Sn1.99Ge0.01O7陶瓷在室温下的 (a)红外响应(彩色符号表示预测的模式位置、对称性和强度); (b)红外吸收光谱峰拟合和(c)Raman光谱

    Fig. 3.  (a) Infrared response (Colored symbols indicate predicted mode positions, symmetries, and intensities); (b) peak-fitting infrared absorption spectra; (c) Raman spectra of Sr3Sn2O7 and Sr3Sn1.99Ge0.01O7.

    图 4  在DHM模式下频率为100 Hz时(a) Sr3Sn2O7和(b) Sr3Sn1.99Ge0.01O7陶瓷的P-EI-E曲线; (c), (d) Sr3Sn2O7和Sr3Sn1.99Ge0.01O7陶瓷在10 Hz频率下通过PUND获得的P-EI-E曲线

    Fig. 4.  At frequency of 100 Hz in DHM mode: P-E loops and displacement current recorded of (a) Sr3Sn2O7, (b) Sr3Sn1.99Ge0.01O7; P-E loops of Sr3Sn2O7 and Sr3Sn1.99Ge0.01O7 ceramics obtained at frequency of 10 Hz by PUND measurement for (c) and (d), respectively.

    图 5  (a) Sr3Sn2O7和(b) Ge-Sr3Sn2O7的极化值(P)沿A21am铁电结构(λ = 1)到I4/mmm中心对称顺电结构(λ = 0)路径的变化

    Fig. 5.  The change in polarization P of Sr3Sn2O7 and Ge-Sr3Sn2O7 along a path from the ferroelectric structure A21am (λ = 1) to the centrosymmetric paraelectric structure I4/mmm (λ = 0).

    图 9  (a) Ge-Sr3Sn2O7的结构示意图; Sr3Sn2O7 (b)和Ge-Sr3Sn2O7 (c)在[001]方向12.3 Å处平面上的二维差分电荷密度图, 等高线间隔为0.005

    Fig. 9.  (a) The schematic of Ge-Sr3Sn2O7; the two-dimensional charge density difference of Sr3Sn2O7 (b) and Ge doped Sr3Sn2O7 (c) for [001] plane at 12.3 Å.

    图 6  Sr3Sn2O7沿着a方向(a)原子和(c)逐层对宏观极化贡献; Ge-Sr3Sn2O7沿着a方向(b)原子和(d)逐层对宏观极化贡献(原子标签对应于图1(b), R表示岩盐层处, P表示钙钛矿层处)

    Fig. 6.  (a), (b) Atomic and (c), (d) layer resolved contributions to macroscopic polarization along a of Sr3Sn2O7 and Ge-Sr3Sn2O7, respectively (atoms correspond to Fig. 1(b), R represents the layer in rock-salt sheets and P represents the layer in perovskite sheets).

    图 7  Sr3Sn2O7和Sr3Sn1.99Ge0.01O7陶瓷的(a)漏电流曲线和(b)光吸收谱, 插图为(αhv)2hv的关系

    Fig. 7.  (a) The leakage current density as a function of applied electric field for Sr3Sn2O7 and Sr3Sn1.99Ge0.01O7 ceramics; (b) UV-Vis absorption spectra of Sr3Sn2O7 and Sr3Sn1.99Ge0.01O7 ceramics. Inset: a functional relationship of (αhv)2 and hv.

    图 8  Sr3Sn2O7和Ge-Sr3Sn2O7中每个原子轨道的态密度

    Fig. 8.  Projected density of states (PDOS) of Sr3Sn2O7 and Ge-Sr3Sn2O7, respectively.

    表 1  在室温下根据粉末XRD图谱进行Rietveld精修结果得出的室温下Sr3Sn2O7和Sr3Sn1.99Ge0.01O7陶瓷的晶胞参数

    Table 1.  Structure parameters obtained from rietveld refinement of Sr3Sn2O7 and Sr3Sn1.99Ge0.01O7.

    xabcV3Sn-O1/Sn-O2Sn-O3/Sn-O4Sn-O1-Snχ2
    05.7073(5)5.7275(9)20.6614(6)675.39(1)2.0543/2.01572.0519/2.0655165.57249.34
    0.015.7072(9)5.7279(8)20.6537(9)675.17(5)2.0746/2.01242.0469/2.0253164.59057.63
    下载: 导出CSV

    表 A1  Sr3Sn2O7 (空间群: A21am) 在Γ点声子频率的计算值(单位: cm–1)

    Table A1.  Calculated Γ-point phonon frequencies (in cm–1) of the Sr3Sn2O7 A21am phase.

    ModeFreq.ModeFreq.ModeFreq.ModeFreq.
    A1(1)83.45A2(1)84.32B1(1)79.63B2(1)98.83
    A1(2)106.1A2(2)95.39B1(2)120.98B2(2)105.36
    A1(3)113.74A2(3)117.77B1(3)135.12B2(3)120.32
    A1(4)137.11A2(4)143.61B1(4)145.26B2(4)146.46
    A1(5)161.92A2(5)151.16B1(5)152.96B2(5)147.76
    A1(6)169.23A2(6)167.5B1(6)177.96B2(6)171.62
    A1(7)180.04A2(7)184.97B1(7)222.77B2(7)214.88
    A1(8)205.98A2(8)224.54B1(8)235.61B2(8)228.54
    A1(9)218.41A2(9)270.38B1(9)256.1B2(9)239.46
    A1(10)235.43A2(10)282.2B1(10)284.18B2(10)268.64
    A1(11)259.61A2(11)312.19B1(11)335.67B2(11)309.89
    A1(12)268.83A2(12)323.99B1(12)357.18B2(12)320.91
    A1(13)335.88A2(13)389.97B1(13)501.68B2(13)335.2
    A1(14)380.89A2(14)481.55B1(14)552.45B2(14)351.21
    A1(15)421.45A2(15)566.25B1(15)610.85B2(15)404.25
    A1(16)504.49A2(16)620.55B1(16)657.19B2(16)510.89
    A1(17)572.78A2(17)717.72B2(17)623.74
    A1(18)610.09B2(18)708.57
    下载: 导出CSV

    表 A2  计算的沿着a方向各个原子的玻恩有效电荷和从高对称的顺电相I4/mmm到低对称的铁电相A21am的相对原子位移

    Table A2.  The calculated Born effective charges and relative atomic displacements along a direction from the high symmetry I4/mmm to distorted A21am positions.

    Atom $Z^*$ Atom $Z^*$ x
    Sr1 2.50(6) Sr1 2.51(3) –0.04(8)
    Sr2 2.33(1) Sr2 2.34(6) 0.37(2)
    Sn 4.22(0) Sn/Ge 4.25(2)/4.37(7) 0.15(0)
    O1 –1.75(2) O1 –1.73(6) 0.14(0
    O2 –1.93(2) O2 –1.93(2) 0.03(5)
    O3 –2.49(8) O3 –2.53(4) 0.42(2)
    O4 –2.49(8) O4 –2.53(7) –0.11(7)
    下载: 导出CSV
    Baidu
  • [1]

    Scott J F 2007 Science 315 954Google Scholar

    [2]

    Haertling G H 1999 J. Am. Ceram. Soc. 82 797Google Scholar

    [3]

    Benedek N A, Fennie C J 2011 Phys. Rev. Lett. 106 107204Google Scholar

    [4]

    刘小强, 吴淑雅, 朱晓莉, 陈湘明 2018 67 50Google Scholar

    Liu X Q, Wu S Y, Zhu X L, Chen X M 2018 Acta Phys. Sin. 67 50Google Scholar

    [5]

    Zhang H W, Yuan K J, Tang H, Zheng P F, Zhou W, Wang C, Liu W F 2023 J. Solid State Chem. 325 124180Google Scholar

    [6]

    Wu X X, Wang S Y, Wong-Ng W, Gu Q, Jiang Y, Wang C, Ma S, Liu W F 2021 J. Adv. Ceram. 10 120Google Scholar

    [7]

    Wang Y Z, Huang F T, Luo X, Gao B, Cheong S W 2017 Adv. Mater. 29 1601288Google Scholar

    [8]

    Xu X H, Wang Y Z, Huang F T, Du K, Nowadnick E A, Cheong S W 2020 Adv. Funct. Mater. 30 2003623Google Scholar

    [9]

    Gu Q, Liu W F, Wong-Ng W, Wu X X, Wang C, Zhou W, Wang S Y 2021 J. Electroceram. 47 42Google Scholar

    [10]

    Lu J J, Liu X Q, Ma X, Fu M S, Yuan A, Wu Y J, Chen X M 2019 J. Appl. Phys. 125 044101Google Scholar

    [11]

    Chen B H, Sun T L, Liu X Q, Zhu X L, Tian H, Chen X M 2020 Appl. Phys. Lett. 116 042903Google Scholar

    [12]

    Chen Q S, Zhang B H, Chen B H, Liu X Q, Chen X M 2022 J. Appl. Phys. 131 184102Google Scholar

    [13]

    Wu H D, Gao Z Y, Cai W, Gao R, Chen D, Chen G, Deng X, Wang Z, Lei X, Wang X Y, Fu C 2022 Mater. Today Chem. 26 101226Google Scholar

    [14]

    Fukasawa I, Maruyama Y, Yoshida S, Fujita K, Takahashi H, Ohgaki M, Nagao M, Watauchi S, Gopalan V, Tanaka K, Tanaka I 2023 J. Cryst. Growth 615 127241Google Scholar

    [15]

    Xiao Z F, Xiao T Q, Wang S Y, Huang S, Wei B D, Liu W F 2024 J. Am. Ceram. Soc. 107 334Google Scholar

    [16]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [17]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [18]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [19]

    Becke A D, Johnson E R 2006 J. Chem. Phys. 124 221101Google Scholar

    [20]

    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515Google Scholar

    [21]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [22]

    Resta R 1994 Rev. Mod. Phys. 66 899Google Scholar

    [23]

    Meyer B, Vanderbilt D 2002 Phys. Rev. B 65 104111Google Scholar

    [24]

    Kroumova E, Aroyo M I, Perez-Mato J M, Kirov A, Capillas C, Ivantchev S, Wondratschek H 2003 Phase Transitions 76 155Google Scholar

    [25]

    Skelton J M, Burton L A, Jackson A J, Oba F, Parker S C, Walsh A 2017 Phys. Chem. Chem. Phys. 19 12452Google Scholar

    [26]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272Google Scholar

    [27]

    Wiles D B, Young R A 1981 J. Appl. Crystallogr. 14 149Google Scholar

    [28]

    Lufaso M W, Woodward P M 2004 Acta Crystallogr. , Sect. B 60 10Google Scholar

    [29]

    Liu X Q, Chen B H, Lu J J, Hu Z Z, Chen X M 2018 Appl. Phys. Lett. 113 242904Google Scholar

    [30]

    Fawcett I D, Kim E, Greenblatt M, Croft M, Bendersky L A 2000 Phys. Rev. B 62 6485Google Scholar

    [31]

    Huang L F, Lu X Z, Rondinelli J M 2016 Phys. Rev. Lett. 117 115901Google Scholar

    [32]

    Mulder A T, Benedek N A, Rondinelli J M, Fennie C J 2013 Adv. Funct. Mater. 23 4810Google Scholar

    [33]

    黄昆 2012 固体物理学 (北京: 高等教育出版社) 第78页

    Huang K 2012 Solid State Physics (Beijing: Higher Education Press) p78

    [34]

    Smith K A, Ramkumar S P, Harms N C, Clune A J, Xu X, Cheong S W, Liu Z, Nowadnick E A, Musfeldt J L 2021 Phys. Rev. B 104 064106Google Scholar

    [35]

    Yuan K J, Zhang H W, Gu Q, Xiao T Q, Li Z Y, Wong-Ng W K, Zhou W, Wang C, Wang S Y, Liu W F 2023 J. Am. Ceram. Soc. 106 2455Google Scholar

    [36]

    Sun X F, Yang X M, Xu C, Gan X C, Zhang W J, Gao Z R, Cai H L, Wu X S 2019 Chem. Phys. Lett. 728 74Google Scholar

    [37]

    Singh M K, Karan N K, Katiyar R S, Scott J F, Jang H M 2008 J. Phys. : Condens. Matter 20 055210Google Scholar

    [38]

    Spaldin N A 2012 J. Solid State Chem. 195 2Google Scholar

    [39]

    Neaton J B, Ederer C, Waghmare U V, Spaldin N A, Rabe K M 2005 Phys. Rev. B 71 014113Google Scholar

    [40]

    Filip L D, Plugaru N, Pintilie L 2019 Modell. Simul. Mater. Sci. Eng. 27 045008Google Scholar

    [41]

    Kamimura S, Obukuro Y, Matsushima S, Nakamura H, Arai M, Xu C N 2015 J. Solid State Chem. 232 163Google Scholar

    [42]

    Tauc J, Grigorovici R, Vancu A 1966 Phys. Status. 15 627Google Scholar

    [43]

    Kamimura S, Yamada H, Xu C N 2012 Appl. Phys. Lett. 101 091113Google Scholar

    [44]

    Kumaradhas P, Gopalan R S, Kulkarni G U 1999 Proc. Indian Acad. Sci. (Chem. Sci.) 111 569Google Scholar

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算.  , 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] 丁莉洁, 张笑天, 郭欣宜, 薛阳, 林常青, 黄丹. SrSnO3作为透明导电氧化物的第一性原理研究.  , 2023, 72(1): 013101. doi: 10.7498/aps.72.20221544
    [3] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算.  , 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [4] 陈光平, 杨金妮, 乔昌兵, 黄陆君, 虞静. Er3+掺杂TiO2的局域结构及电子性质的第一性原理研究.  , 2022, 71(24): 246102. doi: 10.7498/aps.71.20221847
    [5] 杨顺杰, 李春梅, 周金萍. 磁无序及合金化效应影响Co2CrZ (Z = Ga, Si, Ge)合金相稳定性和弹性常数的第一性原理研究.  , 2022, 71(10): 106201. doi: 10.7498/aps.71.20212254
    [6] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算.  , 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [7] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究.  , 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [8] 刘小强, 吴淑雅, 朱晓莉, 陈湘明. Ruddlesden-Popper结构杂化非本征铁电体及其多铁性.  , 2018, 67(15): 157503. doi: 10.7498/aps.67.20180317
    [9] 姜平国, 汪正兵, 闫永播, 刘文杰. W20O58(010)表面氢吸附机理的第一性原理研究.  , 2017, 66(24): 246801. doi: 10.7498/aps.66.246801
    [10] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究.  , 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [11] 高淼, 孔鑫, 卢仲毅, 向涛. Li2C2中电声耦合及超导电性的第一性原理计算研究.  , 2015, 64(21): 214701. doi: 10.7498/aps.64.214701
    [12] 彭琼, 何朝宇, 李金, 钟建新. MoSi2薄膜电子性质的第一性原理研究.  , 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [13] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算.  , 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [14] 李荣, 罗小玲, 梁国明, 付文升. 掺杂Fe对VH2解氢性能影响的第一性原理研究.  , 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [15] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算.  , 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [16] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究.  , 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [17] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究.  , 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [18] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算.  , 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [19] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算.  , 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [20] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算.  , 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
计量
  • 文章访问数:  1537
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-28
  • 修回日期:  2024-05-20
  • 上网日期:  2024-05-30
  • 刊出日期:  2024-07-20

/

返回文章
返回
Baidu
map