搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

系列小分子液体中α弛豫与探针离子电导行为的对比

赵兴宇 王丽娜 韩宏博 尚洁莹

引用本文:
Citation:

系列小分子液体中α弛豫与探针离子电导行为的对比

赵兴宇, 王丽娜, 韩宏博, 尚洁莹

Comparative investigations on α relaxation and conductivity of probe ions in a series of small molecular liquids

Zhao Xing-Yu, Wang Li-Na, Han Hong-Bo, Shang Jie-Ying
PDF
HTML
导出引用
  • 液体中平动和转动的耦合性是凝聚态物理长期关注的问题之一, 本文采用介电谱方法同时获得了系列小分子液体中α弛豫的弛豫时间和探针离子的电导率. 样品包括具有不同分子形状和官能团的碳原子数跨度在3—14范围内的15种一元和二元小分子液体. 分析结果表明平动和转动的耦合性与液体分子的官能团并没有直接的对应关系, 对分子形状、大小和离子大小也不是十分敏感, 但是液体的微观结构是影响平动和转动耦合性的重要因素. 也就是, 无论在一元还是二元体系中, 液体的微观结构没有改变时电导率的倒数和弛豫时间与温度的依赖关系具有一致性, 这也为弛豫时间的测量提供了一种方法. 研究结果还表明, 液体中自身携带的杂质离子与定量掺入离子的电导率的温度依赖关系相同, 为电解质溶解度低的有机小分子液体中离子电导率行为的研究提供了思路. 本文中单羟基醇的实验结果也与单羟基醇中α弛豫而非Debye弛豫对应于体系结构弛豫的观点相一致.
    The coupling between translational motion and rotational motion in liquids is one of the long-standing concerns in condensed matter physics. The relaxation times of α relaxation and probe ion conductivities in a series of small molecular liquids, 15 types of single and binary small molecular liquids with different molecular shapes and functional groups when the number of carbon atoms is in a range from 3 to 14, are simultaneously obtained by dielectric spectroscopy method in this work. The results indicate that the coupling between translation and rotation is not directly related to the functional group of liquid molecules, nor very sensitive to the shape nor the size of molecules or ion size. However, the microstructure of liquid is a key factor affecting the coupling between translation and rotation. In other words, when the microstructure of the liquid is unchanged, the dependence of relaxation time on temperature is consistent with the dependence of conductivity reciprocal on temperature, whether in single small molecular liquids or in binary small molecular liquids, which provides a method for measuring relaxation time. The research results also show that the temperature dependence of the conductivity of the impurity ions carried by the liquid itself is consistent with the one of quantitatively doped ions, providing the ideas for investigating the ion conductivity behavior in organic small molecular liquids with low electrolyte solubilities. The experimental results of monohydroxy alcohol are consistent with the viewpoint that α relaxation rather than Debye relaxation corresponds to the system structure relaxation.
      通信作者: 王丽娜, wln_shuijin@163.com
    • 基金项目: 新疆维吾尔自治区自然科学基金(批准号: 2021D01C464, 2021D01C465)和伊犁师范大学提升学科综合实力专项 (批准号: 22XKZY27)资助的课题.
      Corresponding author: Wang Li-Na, wln_shuijin@163.com
    • Funds: Project supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (Grant Nos. 2021D01C464, 2021D01C465) and the Special Project for Enhancing the Comprehensive Strength of Disciplines of Yili Normal University, China (Grant No. 22XKZY27).
    [1]

    Shirai K, Watanabe K, Momida H 2022 J. Phys. : Condens. Matter 34 375902Google Scholar

    [2]

    Ouyang L F, Shen J, Huang Y, Sun Y H, Bai H Y, Wang W H 2023 J. Appl. Phys. 133 85105Google Scholar

    [3]

    Böhmer R, Gainaru C, Richert R 2014 Phys. Rep. 545 125Google Scholar

    [4]

    Shen J, Zhang H P, Chen Z Q, Ouyang L F, Wang F R, Lu Z, Li M Z, Sun Y H, Bai H Y, Wang W H 2023 Acta Mater. 244 118554Google Scholar

    [5]

    Singh A, Singh Y 2023 Phys. Rev. E 107 14119Google Scholar

    [6]

    Volbers J C, Lauterböck L, Hofmann N, Glasmacher B 2016 Curr. Dir. Biomed. Eng. 2 315Google Scholar

    [7]

    Zhu X C, Miller-Ezzy P, Gluis M, Zhao Y Y, Qin J G, Tang Y H, Liu Y B, Li X X 2023 Aquaculture 574 739650Google Scholar

    [8]

    Novikov V N 2016 Chem. Phys. Lett. 659 133Google Scholar

    [9]

    Dyre J C 2006 Rev. Mod. Phys. 78 953Google Scholar

    [10]

    Kremer F 2002 J. Non-Cryst. Solids 305 1Google Scholar

    [11]

    Iacob C, Sangoro J R, Serghei A, Naumov S, Korth Y, Kärger J, Friedrich C, Kremer F 2008 J. Chem. Phys. 129 234511Google Scholar

    [12]

    Wang J, Cai Z Q, Kang H, Huo B K, Zhang Y H, Gao Y Q, Li Z J, Feng S D, Wang L M 2024 Mater. Design 238 112665Google Scholar

    [13]

    Duan Y J, Nabahat M, Tong Y, Ortiz-Membrado L, Jiménez-Piqué E, Zhao K, Wang Y J, Yang Y, Wada T, Kato H, Pelletier J M, Qiao J C, Pineda E 2024 Phys. Rev. Lett. 132 56101Google Scholar

    [14]

    Chen Y X, Feng S D, Lu X Q, Pan S P, Xia C Q, Wang L M 2023 J. Chem. Phys. 158 134511Google Scholar

    [15]

    Duan Y J, Zhang L T, Qiao J C, Wang Y J, Yang Y, Wada T, Kato H, Pelletier J M, Pineda E, Crespo D 2022 Phys. Rev. Lett. 129 175501Google Scholar

    [16]

    Zhao X Y, Wang L N, Yin H M, Zhou H W, Huang Y N 2019 Chin. Phys. B 28 86601Google Scholar

    [17]

    Nernst W 1888 Z. Phys. Chem. 2 613Google Scholar

    [18]

    Einstein A 1905 Ann. Phys. (Berlin) 17 549Google Scholar

    [19]

    Claisse F, Koenig H P 1956 Acta Metallurgica 4 650Google Scholar

    [20]

    Masuhr A, Waniuk T A, Busch R, Johnson W L 1999 Phys. Rev. Lett. 82 2290Google Scholar

    [21]

    Wang L M and Sun M D 2010 J. Yanshan Univ. 34 471 [王利民, 孙明道 2010 燕山大学学报 34 471]Google Scholar

    Wang L M and Sun M D 2010 J. Yanshan Univ. 34 471Google Scholar

    [22]

    Tarjus G, Kivelson D 1995 J. Chem. Phys. 103 3071Google Scholar

    [23]

    Khrapak S A 2022 J. Mol. Liq. 354 118840Google Scholar

    [24]

    Griffin P J, Sangoro J R, Wang Y, Holt A P, Novikov V N, Sokolov A P, Wojnarowska Z, Paluch M, Kremer F 2013 Soft Matter 9 10373Google Scholar

    [25]

    Swiergiel J, Bouteiller L, Jadzyn J 2014 Soft Matter 10 8457Google Scholar

    [26]

    Kawasaki T, Kim K 2019 Sci. Rep. 9 8118Google Scholar

    [27]

    Power G, Vij J K, Johari G P 2007 J. Phys. Chem. B 111 11201Google Scholar

    [28]

    Xiao H, Zhang L, Yi J, Li S, Zhao B G, Zhai Q J, Gao Y L 2022 Intermetallics 143 107494Google Scholar

    [29]

    Charbonneau P, Jin Y, Parisi G, Zamponi F 2014 Proc. National Academy Sci. 111 15025Google Scholar

    [30]

    Starzonek S, Rzoska S J, Drozd-Rzoska A, Pawlus S, Biała E, Martinez-Garcia J C, Kistersky L 2015 Soft Matter 11 5554Google Scholar

    [31]

    Zhao X Y, Wang L N, He Y F, Zhou H, Huang Y N 2020 Chem. Phys. 528 110473Google Scholar

    [32]

    Ishai P B, Talary M S, Caduff A, Levy E, Feldman Y 2013 Meas. Sci. Technol. 24 102001Google Scholar

    [33]

    Lunkenheimer P, Schneider U, Brand R, Loidl A 2000 Contemp. Phys. 41 15Google Scholar

    [34]

    Huth H, Wang L M, Schick C, Richert R 2007 J. Chem. Phys. 126 104503Google Scholar

    [35]

    Jakobsen B, Maggi C, Christensen T, Dyre J C 2008 J. Chem. Phys. 129 184502Google Scholar

    [36]

    Gainaru C, Meier R, Schildmann S, Lederle C, Hiller W, Rössler E A, Böhmer R 2010 Phys. Rev. Lett. 105 258303Google Scholar

    [37]

    Gainaru C, Kastner S, Mayr F, Lunkenheimer P, Schildmann S, Weber H J, Hiller W, Loidl A, Böhmer R 2011 Phys. Rev. Lett. 107 118304Google Scholar

    [38]

    Bauer S, Burlafinger K, Gainaru C, Lunkenheimer P, Hiller W, Loidl A, Böhmer R 2013 J. Chem. Phys. 138 94505Google Scholar

    [39]

    Lu G, Wang L N, Zhao X Y, He Y, Huang Y N 2021 Int. J. Mod. Phys. B 35 2150014Google Scholar

    [40]

    Wang L N, Zhao X Y, Huang Y N 2019 Chin. Phys. Lett. 36 97701Google Scholar

    [41]

    Ediger M D, Angell C A, Nagel S R 1996 J. Phys. Chem. 100 13200Google Scholar

    [42]

    Zhang H, Zhong C, Douglas J F, Wang X D, Cao Q P, Zhang D X, Jiang J Z 2015 J. Chem. Phys. 142 164506Google Scholar

    [43]

    Moynihan C T, Macedo P B, Montrose C J, Gupta P K 1976 Ann. Ny. Acad. Sci. 279 15Google Scholar

  • 图 1  掺入0.5‰氯化钠的1, 3-丙二醇的$ \varepsilon '' $

    Fig. 1.  $ \varepsilon '' $ of 1, 3-propanediol doped with 0.5‰ NaCl.

    图 2  掺入0.5‰氯化钠的1,3-丙二醇的$ \omega \varepsilon '' $和$ \sigma $

    Fig. 2.  $ \omega \varepsilon '' $ and $ \sigma $ of 1,3-propanediol doped with 0.5‰ NaCl.

    图 3  1, 3-丙二醇原始样品的$ \omega \varepsilon '' $和$ \sigma $

    Fig. 3.  $ \omega \varepsilon '' $ and $ \sigma $ of crude 1, 3-propanediol.

    图 4  掺入0.5‰氯化钠的1,3-丙二醇及其原始样品的$ {\tau }_{{\mathrm{r}}} $和$ \sigma $

    Fig. 4.  $ {\tau }_{{\mathrm{r}}} $ and $ \sigma $ of 1,3-propanediol doped with 0.5‰ NaCl and its crude sample.

    图 5  掺入0.1‰氯化镁的三丙二醇和掺入0.1‰氯化钠的一缩二丙二醇及其原始样品的$ {\tau }_{{\mathrm{r}}} $和$ \sigma $

    Fig. 5.  $ {\tau }_{{\mathrm{r}}} $ and $ \sigma $ of tripropylene glycol doped with 0.1‰ MgCl2 and dipropylene glycol with 0.1‰ NaCl as well as their crude samples.

    图 6  掺入1‰氯化钠的丙三醇[16]及其原始样品[33]的$ {\tau }_{{\mathrm{r}}} $和$ \sigma $

    Fig. 6.  $ {\tau }_{{\mathrm{r}}} $ and $ \sigma $ of glycerol doped with 1‰ NaCl[16] and its crude sample[33].

    图 7  邻苯二甲酸二乙酯和邻苯二甲酸二丙酯原始样品的$ {\tau }_{{\mathrm{r}}} $和$ \sigma $

    Fig. 7.  $ {\tau }_{{\mathrm{r}}} $ and $ \sigma $ of crude diethyl phthalate and dipropyl phthalate.

    图 8  掺入0.3‰氯化钠的70%1,2-丙二醇和30%1, 3-丙二醇混合液体与掺入0.3‰氯化镁的70%1,3-丁二醇和30%丙三醇混合液体及其原始样品的$ {\tau }_{{\mathrm{r}}} $和$ \sigma $

    Fig. 8.  $ {\tau }_{{\mathrm{r}}} $ and $ \sigma $ of mixed liquid of 70% 1,2-propanediol and 30% 1,3-propanediol doped with 0.3‰ NaCl and mixed liquid of 70% 1,3-butanediol and 30% glycerol doped with 0.3‰ MgCl2 as well as their crude samples.

    图 9  2-乙基–1-丁醇的$ \varepsilon '' $

    Fig. 9.  $ \varepsilon '' $ of 2-ethyl-1-butanol.

    图 10  2-乙基–1-丁醇的$ {\tau }_{{\mathrm{r}}} $[38], $ {\tau }_{{\mathrm{D}}} $和$ \sigma $

    Fig. 10.  $ {\tau }_{{\mathrm{r}}} $[38], $ {\tau }_{{\mathrm{D}}} $ and $ \sigma $ of 2-ethyl-1-butanol.

    Baidu
  • [1]

    Shirai K, Watanabe K, Momida H 2022 J. Phys. : Condens. Matter 34 375902Google Scholar

    [2]

    Ouyang L F, Shen J, Huang Y, Sun Y H, Bai H Y, Wang W H 2023 J. Appl. Phys. 133 85105Google Scholar

    [3]

    Böhmer R, Gainaru C, Richert R 2014 Phys. Rep. 545 125Google Scholar

    [4]

    Shen J, Zhang H P, Chen Z Q, Ouyang L F, Wang F R, Lu Z, Li M Z, Sun Y H, Bai H Y, Wang W H 2023 Acta Mater. 244 118554Google Scholar

    [5]

    Singh A, Singh Y 2023 Phys. Rev. E 107 14119Google Scholar

    [6]

    Volbers J C, Lauterböck L, Hofmann N, Glasmacher B 2016 Curr. Dir. Biomed. Eng. 2 315Google Scholar

    [7]

    Zhu X C, Miller-Ezzy P, Gluis M, Zhao Y Y, Qin J G, Tang Y H, Liu Y B, Li X X 2023 Aquaculture 574 739650Google Scholar

    [8]

    Novikov V N 2016 Chem. Phys. Lett. 659 133Google Scholar

    [9]

    Dyre J C 2006 Rev. Mod. Phys. 78 953Google Scholar

    [10]

    Kremer F 2002 J. Non-Cryst. Solids 305 1Google Scholar

    [11]

    Iacob C, Sangoro J R, Serghei A, Naumov S, Korth Y, Kärger J, Friedrich C, Kremer F 2008 J. Chem. Phys. 129 234511Google Scholar

    [12]

    Wang J, Cai Z Q, Kang H, Huo B K, Zhang Y H, Gao Y Q, Li Z J, Feng S D, Wang L M 2024 Mater. Design 238 112665Google Scholar

    [13]

    Duan Y J, Nabahat M, Tong Y, Ortiz-Membrado L, Jiménez-Piqué E, Zhao K, Wang Y J, Yang Y, Wada T, Kato H, Pelletier J M, Qiao J C, Pineda E 2024 Phys. Rev. Lett. 132 56101Google Scholar

    [14]

    Chen Y X, Feng S D, Lu X Q, Pan S P, Xia C Q, Wang L M 2023 J. Chem. Phys. 158 134511Google Scholar

    [15]

    Duan Y J, Zhang L T, Qiao J C, Wang Y J, Yang Y, Wada T, Kato H, Pelletier J M, Pineda E, Crespo D 2022 Phys. Rev. Lett. 129 175501Google Scholar

    [16]

    Zhao X Y, Wang L N, Yin H M, Zhou H W, Huang Y N 2019 Chin. Phys. B 28 86601Google Scholar

    [17]

    Nernst W 1888 Z. Phys. Chem. 2 613Google Scholar

    [18]

    Einstein A 1905 Ann. Phys. (Berlin) 17 549Google Scholar

    [19]

    Claisse F, Koenig H P 1956 Acta Metallurgica 4 650Google Scholar

    [20]

    Masuhr A, Waniuk T A, Busch R, Johnson W L 1999 Phys. Rev. Lett. 82 2290Google Scholar

    [21]

    Wang L M and Sun M D 2010 J. Yanshan Univ. 34 471 [王利民, 孙明道 2010 燕山大学学报 34 471]Google Scholar

    Wang L M and Sun M D 2010 J. Yanshan Univ. 34 471Google Scholar

    [22]

    Tarjus G, Kivelson D 1995 J. Chem. Phys. 103 3071Google Scholar

    [23]

    Khrapak S A 2022 J. Mol. Liq. 354 118840Google Scholar

    [24]

    Griffin P J, Sangoro J R, Wang Y, Holt A P, Novikov V N, Sokolov A P, Wojnarowska Z, Paluch M, Kremer F 2013 Soft Matter 9 10373Google Scholar

    [25]

    Swiergiel J, Bouteiller L, Jadzyn J 2014 Soft Matter 10 8457Google Scholar

    [26]

    Kawasaki T, Kim K 2019 Sci. Rep. 9 8118Google Scholar

    [27]

    Power G, Vij J K, Johari G P 2007 J. Phys. Chem. B 111 11201Google Scholar

    [28]

    Xiao H, Zhang L, Yi J, Li S, Zhao B G, Zhai Q J, Gao Y L 2022 Intermetallics 143 107494Google Scholar

    [29]

    Charbonneau P, Jin Y, Parisi G, Zamponi F 2014 Proc. National Academy Sci. 111 15025Google Scholar

    [30]

    Starzonek S, Rzoska S J, Drozd-Rzoska A, Pawlus S, Biała E, Martinez-Garcia J C, Kistersky L 2015 Soft Matter 11 5554Google Scholar

    [31]

    Zhao X Y, Wang L N, He Y F, Zhou H, Huang Y N 2020 Chem. Phys. 528 110473Google Scholar

    [32]

    Ishai P B, Talary M S, Caduff A, Levy E, Feldman Y 2013 Meas. Sci. Technol. 24 102001Google Scholar

    [33]

    Lunkenheimer P, Schneider U, Brand R, Loidl A 2000 Contemp. Phys. 41 15Google Scholar

    [34]

    Huth H, Wang L M, Schick C, Richert R 2007 J. Chem. Phys. 126 104503Google Scholar

    [35]

    Jakobsen B, Maggi C, Christensen T, Dyre J C 2008 J. Chem. Phys. 129 184502Google Scholar

    [36]

    Gainaru C, Meier R, Schildmann S, Lederle C, Hiller W, Rössler E A, Böhmer R 2010 Phys. Rev. Lett. 105 258303Google Scholar

    [37]

    Gainaru C, Kastner S, Mayr F, Lunkenheimer P, Schildmann S, Weber H J, Hiller W, Loidl A, Böhmer R 2011 Phys. Rev. Lett. 107 118304Google Scholar

    [38]

    Bauer S, Burlafinger K, Gainaru C, Lunkenheimer P, Hiller W, Loidl A, Böhmer R 2013 J. Chem. Phys. 138 94505Google Scholar

    [39]

    Lu G, Wang L N, Zhao X Y, He Y, Huang Y N 2021 Int. J. Mod. Phys. B 35 2150014Google Scholar

    [40]

    Wang L N, Zhao X Y, Huang Y N 2019 Chin. Phys. Lett. 36 97701Google Scholar

    [41]

    Ediger M D, Angell C A, Nagel S R 1996 J. Phys. Chem. 100 13200Google Scholar

    [42]

    Zhang H, Zhong C, Douglas J F, Wang X D, Cao Q P, Zhang D X, Jiang J Z 2015 J. Chem. Phys. 142 164506Google Scholar

    [43]

    Moynihan C T, Macedo P B, Montrose C J, Gupta P K 1976 Ann. Ny. Acad. Sci. 279 15Google Scholar

  • [1] 陈昊鹏, 聂永杰, 李国倡, 魏艳慧, 胡昊, 鲁广昊, 李盛涛, 朱远惟. 聚合物分散液晶薄膜的极化特性及其对电光性能的影响.  , 2023, 72(17): 177701. doi: 10.7498/aps.72.20230664
    [2] 王鹏, 潘凤春, 郭晶晶, 李婷婷, 王旭明. 用双稳态势场模型研究观点转变的驱动-响应关系.  , 2020, 69(6): 060501. doi: 10.7498/aps.69.20191516
    [3] 汪杨, 赵伶玲. 单原子Lennard-Jones体黏弹性弛豫时间.  , 2020, 69(12): 123101. doi: 10.7498/aps.69.20200138
    [4] 汤卉, 唐新桂, 蒋艳平, 刘秋香, 李文华. 铌酸锶钡陶瓷中氧空位对离子电导率和弛豫现象的影响.  , 2019, 68(22): 227701. doi: 10.7498/aps.68.20190562
    [5] 王文钊, 胡碧涛, 郑皓, 屠小青, 高朋林, 闫松, 郭文传, 闫海洋. 一种可用于极化3He实验的新型磁场系统.  , 2018, 67(17): 176701. doi: 10.7498/aps.67.20180571
    [6] 任晓霞, 申凤娟, 林歆悠, 郑瑞伦. 石墨烯低温热膨胀和声子弛豫时间随温度的变化规律.  , 2017, 66(22): 224701. doi: 10.7498/aps.66.224701
    [7] 张克声, 朱明, 唐文勇, 欧卫华, 蒋学勤. 可激发气体振动弛豫时间的两频点声测量重建算法.  , 2016, 65(13): 134302. doi: 10.7498/aps.65.134302
    [8] 贾雅琼, 王殊, 朱明, 张克声, 袁飞阁. 气体声弛豫过程中有效比热容与弛豫时间的分解对应关系.  , 2012, 61(9): 095101. doi: 10.7498/aps.61.095101
    [9] 王兵, 吴秀清. 双色噪声驱动光学双稳系统的弛豫时间研究.  , 2011, 60(7): 074214. doi: 10.7498/aps.60.074214
    [10] 王君君, 龚静, 宫振丽, 闫晓丽, 高舒, 王波. 聚合物纳米复合电解质(PEO)8-ZnO-LiClO4微结构及电导率研究.  , 2011, 60(12): 127803. doi: 10.7498/aps.60.127803
    [11] 高韶华, 王玉霞, 王宏伟, 袁帅. KAg4I5-AgI复合体系的电导率研究.  , 2011, 60(8): 086601. doi: 10.7498/aps.60.086601
    [12] 赵建玉, 孙喜明, 贾 磊. 气体分子动力学交通流模型弛豫时间的改进.  , 2006, 55(5): 2306-2312. doi: 10.7498/aps.55.2306
    [13] 魏 兵, 葛德彪. 各向异性有耗介质板介电系数和电导率的反演.  , 2005, 54(2): 648-652. doi: 10.7498/aps.54.648
    [14] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法.  , 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
    [15] 马燕云, 常文蔚, 银 燕, 岳宗五, 曹莉华, 刘大庆. 等离子体粒子模拟中的一种碰撞模型.  , 2000, 49(8): 1513-1519. doi: 10.7498/aps.49.1513
    [16] 苏昉, 谢斌, 赵明文, 吴希俊. 纳米CaF2离子电导率和介电常数的静水压效应.  , 1995, 44(5): 755-762. doi: 10.7498/aps.44.755
    [17] 苏昉, 吴希俊, 秦晓英, 谢斌, 纪小丽. 纳米CaF2和纳米Ca0.75La0.25F2.25的结构对离子电导率的影响.  , 1993, 42(6): 969-977. doi: 10.7498/aps.42.969
    [18] 赵宗源, 陈立泉, 倪泳明, 马明荣. 室温快离子导体Rb4Cu16I7Cl13的电导率和热容研究.  , 1984, 33(11): 1556-1562. doi: 10.7498/aps.33.1556
    [19] 邱佩华, В.可潘斯基. 十一甲川和五甲川染料的吸收和弛豫时间.  , 1982, 31(2): 243-246. doi: 10.7498/aps.31.243
    [20] 刘大江, 陈教芳. 红宝石Cr3+离子的自旋-晶格弛豫时间和浓度效应.  , 1966, 22(2): 183-187. doi: 10.7498/aps.22.183
计量
  • 文章访问数:  1117
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-07
  • 修回日期:  2024-05-17
  • 上网日期:  2024-05-30
  • 刊出日期:  2024-07-20

/

返回文章
返回
Baidu
map