搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽带吸收与极化转换可切换的太赫兹超表面

王丹 李九生 郭风雷

引用本文:
Citation:

宽带吸收与极化转换可切换的太赫兹超表面

王丹, 李九生, 郭风雷

Switchable ultra-broadband absorption and polarization conversion terahertz metasurface

Wang Dan, Li Jiu-Sheng, Guo Feng-Lei
PDF
HTML
导出引用
  • 本文提出一种具有宽带吸收与极化转换可切换的太赫兹超表面, 通过调节二氧化钒电导率可实现太赫兹波吸收和极化转换功能灵活切换. 当二氧化钒处于金属状态时, 该超表面表现为宽带吸收器, 在6.32—18.06 THz范围吸收率大于90%, 相对带宽为96.3%. 当二氧化钒为绝缘状态时, 该结构在2.41—3.42 THz, 4.78—7.48 THz和9.53—9.73 THz频率范围表现为极化转换器, 极化转换率大于90%. 该超表面结构可以用于太赫兹波探测、太赫兹通信以及太赫兹传感等领域应用.
    Metasurfaces can realize flexible modulation of electromagnetic waves at the wavelength level. However, the reported functions of metasurface are usually fixed and cannot be changed, once its structural design is completed. The designed metasurface cannot meet the requirements for flexible regulation of terahertz waves. We find that the phase change material of vanadium dioxide can achieve a transition from insulating state to metallic state through thermal, electrical, or light excitation, and the phase transition of this material is reversible. Therefore, using vanadium dioxide to form a composite metasurface can achieve dynamic modulation of terahertz waves. In this study, we propose a terahertz metasurface with switchable broadband absorption and polarization conversion. The proposed metasurface is composed of a 9-layer structure stacked from bottom to top with a combination pattern of different dielectric layers. By adjusting the conductivity of vanadium dioxide, the designed metasurface can achieve flexible switching between terahertz wave absorption function and polarization conversion function. When the vanadium dioxide is in the metal state, the designed metasurface behaves as a broadband absorber with an absorption rate of more than 90% in a range of 6.32–18.06 THz and a relative bandwidth of 96.3%. When the vanadium dioxide is in the insulated state, the designed structure acts as a polarization converter in a frequency range of 2.41–3.42 THz, 4.78–7.48 THz, and 9.53–9.73 THz, respectively, with a polarization conversion rate of over 90%. We believe that this metasurface structure will have good applications in the fields of terahertz wave detection, terahertz switches, terahertz filtering, terahertz communication, and terahertz sensing.
      通信作者: 李九生, lijsh2008@126.com
    • 基金项目: 国家自然科学基金(批准号: 62271460)和浙江省自然科学基金(批准号: LZ24F050005) 资助的课题.
      Corresponding author: Li Jiu-Sheng, lijsh2008@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62271460) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ24F050005).
    [1]

    Chen Z, Chen J J, Tang HW, Shen T, Zhang H 2022 Opt. Express 30 6778Google Scholar

    [2]

    Wu C Y, Fang Y Q, Luo L B, Guo K, Guo Z Y 2020 Mod. Phys. Lett. B 34 2050292Google Scholar

    [3]

    Barkabian M, Sharifi N, Granpayeh N 2021 Opt. Express 29 20160Google Scholar

    [4]

    Wu X L, Zheng Y, Luo Y, Zhang J G, Yi Z, Wu X W, Cheng S B, Yang W X, Yu Y, Wu P H 2021 Phys. Chem. Chem. Phys. 23 26864Google Scholar

    [5]

    He X Y, Liu F, Lin F T, Shi W Z 2021 J. Phys. D: Appl. Phys. 54 235103Google Scholar

    [6]

    Yi N N, Zong R, Qian R R 2022 Mater. Sci. Semicond. Process. 146 106682.Google Scholar

    [7]

    Wang J Y, Yang R C, Li Z H, Tian J P 2022 Opt. Mater. 124 111953Google Scholar

    [8]

    Xu J, Tang J, Cheng Y, Chen M, Wang H X, Xiong J F, Wang T R, Wang S Z, Zhang Y D, Wen H, Qu S L, Yuan L B 2022 Opt. Express 30 17008Google Scholar

    [9]

    Gao J J, Zhao L, Zhang Z Y, Liu S H, Li R M, Mu K J, Zhang B, Wang J Q 2024 Phys. Scr. 99 065565Google Scholar

    [10]

    Liu W W, Xu J S, Song Z Y 2021 Opt. Express 29 23331Google Scholar

    [11]

    Niu J H, Hui Q, Mo W, Tian R F, Zhu A J 2024 Phys. Scr. 99 075916Google Scholar

    [12]

    Zhao Y J, Yang R C, Wang Y X, Zhang W M, Tian J P 2022 Opt. Express 30 27407Google Scholar

    [13]

    Li C Q, Song Z Y 2023 Opt. Laser Technol. 157 108764Google Scholar

    [14]

    Liu L, Huang R, Ouyang Z B 2021 Opt. Express 29 20839Google Scholar

    [15]

    Jiang Y Y, Zhang M, Wang W H, Song Z Y 2022 Phys. Scr. 97 015501Google Scholar

    [16]

    Niu J H, Yao Q Y, Mo W, Li C H, Zhu A J 2023 Opt. Commun. 527 128953Google Scholar

    [17]

    Peng Z, Zheng Z S, Yu Z S, Lan H T, Zhang M, Wang S X, Li L, Liang H W, Su H 2023 Opt. Laser Technol. 157 108723Google Scholar

    [18]

    Lian X J, Ma M T, Tian J P, Yang R C, Wu X T 2023 AEU-Int. J. Electron. C 170 154784

    [19]

    Zhu W, Rukhlenk I D, Premaratn M 2013 Appl. Phys. Lett. 102 241914Google Scholar

    [20]

    Kang L, Wu Y H, Werner D H 2021 Opt. Express 29 8816Google Scholar

    [21]

    Ma W Y, Yu S L, Zhao T G 2021 Opt. Commun. 493 127037Google Scholar

    [22]

    Yu F Y, Zhu J B, Shen X B 2022 Opt. Mater. 123 111745Google Scholar

    [23]

    Kharintsev S S, Battalova E I, Mukhametzyanov T A, Pushkarev A P, Scheblykin I G, Makarov S V, Potma E O, Fishman D A 2023 ACS Nano 17 9235Google Scholar

    [24]

    Lian M, Su Y, Liu K, Zhang S J, Chen X Y, Ren H A, Xu Y H, Chen J J, Tian Z, Cao T 2023 Adv. Opt. Mater. 11 2202439Google Scholar

    [25]

    Zhang P S, Deng X H, Tao L Y, Li P, Lu M, Guo F M, Song Y M, Yuan J R 2023 Opt. Mater. 138 113716Google Scholar

    [26]

    Feng Z J, Ni B, Ni H B, Zhou X Y, Yang L S, Chang J H 2023 J. Opt. Soc. Am. B 40 2174Google Scholar

    [27]

    Miao X, Xiao Z Y, Cui Z T, Zheng T T, Wang X Y 2023 Optik 281 170810Google Scholar

    [28]

    Dong T L, Zhang Y, Li Y, Tang Y P, He, X J 2023 Results Phys. 45 106246Google Scholar

  • 图 1  超宽带太赫兹吸收器与偏振转换器结构示意图 (a) 周期和单元结构; (b) VO2-QR层俯视图; (c) VO2-R层俯视图; (d) 135°不对称十字形金带层俯视图; (e) 45°不对称十字形金带层俯视图

    Fig. 1.  The schematic of the ultrabroadband terahertz absorber and polarization converter: (a) Unit cell; (b) top view of the VO2-QR layer; (c) top view of the VO2-R layer; (d) top view of the 135° asymmetrical cross-shaped gold strip; (e) top view of the 45° asymmetrical cross-shaped gold strip.

    图 2  (a) 超表面结构的吸收、反射、透射曲线; (b) 超表面结构的等效阻抗实部和虚部曲线

    Fig. 2.  (a) Absorption, reflection, and transmission curves of the proposed metasurface; (b) equivalent impedance real and imaginary curves of the proposed metasurface.

    图 3  (a), (b)电场分布俯视图; (c), (d)磁场分布侧视图

    Fig. 3.  (a), (b) Top view of electric field distribution; (c), (d) side view of magnetic field distribution.

    图 4  (a) 垂直入射下, 宽带吸收器在不同偏振角下的吸收光谱; (b) TE模式下吸收器在不同入射角下的吸收光谱; (c) TM模式下吸收器在不同入射角下的吸收光谱

    Fig. 4.  (a) Absorption spectra of ultra-broadband absorber at various polarization angles under normal incidence; (b) absorption spectra of absorber at various incidence angles in TE mode; (c) absorption spectra of absorber at various incidence angles in TM mode

    图 5  不同电导率二氧化钒的太赫兹波吸收曲线

    Fig. 5.  Terahertz wave absorption curves with different conductivities of VO2.

    图 6  (a) x偏振波入射下的反射系数; (b)极化转换率PCR

    Fig. 6.  (a) Reflection coefficients under x-polarized wave normal incidence; (b) polarization conversion rate PCR.

    图 7  当二氧化钒电导率为20 S/m时, 不对称十字形金带的几何参数l1 (a), l2 (b)和介质MF2的厚度t2 (c), t4 (d)对PCR的影响

    Fig. 7.  Geometrical parameters influence on polarization conversion rate (PCR) when the conductivity of VO2 is σ = 20 S/m: (a) l1; (b) l2; (c) t2; (d) t4.

    图 8  (a)—(c)极化转换器的表面电流分布; (d)—(f)极化转换器的磁场分布

    Fig. 8.  (a)–(c) Surface current distribution of the polarization converter; (d)–(f) magnetic field distribution of the polarization converter.

    图 9  该超表面结构的潜在制造工艺流程图

    Fig. 9.  Flow chart of potential fabrication process of the proposed metasurface structure.

    表 1  本文工作与先前报道成果对比

    Table 1.  Comparison of the work with previously reported results.

    文献 可调材料 功能 性能 带宽
    [25] 二氧化钒 宽带吸收 5.8—17.2 THz: A ≥ 90% 吸收11.4 THz
    [26] 二氧化钒 极化转换 1.08—3.22 THz: PCR ≥ 90% 极化转换2.14 THz
    [27] 二氧化钒 窄带吸收、极化转换 1.6 THz: A ≈ 100%;
    0.67—1.99 THz: PCR ≥ 90%
    单频点吸收
    极化转换1.32 THz
    [28] 二氧化钒 宽带吸收、极化转换 0.78—1.81 THz: A ≥ 90%;
    0.51—1.45 THz: PCR ≥ 90%
    吸收1.03 THz
    极化转换0.94 THz
    本文 二氧化钒 宽带吸收、极化转换 6.32—18.06 THz: A ≥ 90%;
    2.41—3.42 THz, 4.78—7.48 THz
    和9.53—9.73 THz: PCR ≥ 90%
    吸收11.74 THz
    极化转换3.91 THz
    下载: 导出CSV
    Baidu
  • [1]

    Chen Z, Chen J J, Tang HW, Shen T, Zhang H 2022 Opt. Express 30 6778Google Scholar

    [2]

    Wu C Y, Fang Y Q, Luo L B, Guo K, Guo Z Y 2020 Mod. Phys. Lett. B 34 2050292Google Scholar

    [3]

    Barkabian M, Sharifi N, Granpayeh N 2021 Opt. Express 29 20160Google Scholar

    [4]

    Wu X L, Zheng Y, Luo Y, Zhang J G, Yi Z, Wu X W, Cheng S B, Yang W X, Yu Y, Wu P H 2021 Phys. Chem. Chem. Phys. 23 26864Google Scholar

    [5]

    He X Y, Liu F, Lin F T, Shi W Z 2021 J. Phys. D: Appl. Phys. 54 235103Google Scholar

    [6]

    Yi N N, Zong R, Qian R R 2022 Mater. Sci. Semicond. Process. 146 106682.Google Scholar

    [7]

    Wang J Y, Yang R C, Li Z H, Tian J P 2022 Opt. Mater. 124 111953Google Scholar

    [8]

    Xu J, Tang J, Cheng Y, Chen M, Wang H X, Xiong J F, Wang T R, Wang S Z, Zhang Y D, Wen H, Qu S L, Yuan L B 2022 Opt. Express 30 17008Google Scholar

    [9]

    Gao J J, Zhao L, Zhang Z Y, Liu S H, Li R M, Mu K J, Zhang B, Wang J Q 2024 Phys. Scr. 99 065565Google Scholar

    [10]

    Liu W W, Xu J S, Song Z Y 2021 Opt. Express 29 23331Google Scholar

    [11]

    Niu J H, Hui Q, Mo W, Tian R F, Zhu A J 2024 Phys. Scr. 99 075916Google Scholar

    [12]

    Zhao Y J, Yang R C, Wang Y X, Zhang W M, Tian J P 2022 Opt. Express 30 27407Google Scholar

    [13]

    Li C Q, Song Z Y 2023 Opt. Laser Technol. 157 108764Google Scholar

    [14]

    Liu L, Huang R, Ouyang Z B 2021 Opt. Express 29 20839Google Scholar

    [15]

    Jiang Y Y, Zhang M, Wang W H, Song Z Y 2022 Phys. Scr. 97 015501Google Scholar

    [16]

    Niu J H, Yao Q Y, Mo W, Li C H, Zhu A J 2023 Opt. Commun. 527 128953Google Scholar

    [17]

    Peng Z, Zheng Z S, Yu Z S, Lan H T, Zhang M, Wang S X, Li L, Liang H W, Su H 2023 Opt. Laser Technol. 157 108723Google Scholar

    [18]

    Lian X J, Ma M T, Tian J P, Yang R C, Wu X T 2023 AEU-Int. J. Electron. C 170 154784

    [19]

    Zhu W, Rukhlenk I D, Premaratn M 2013 Appl. Phys. Lett. 102 241914Google Scholar

    [20]

    Kang L, Wu Y H, Werner D H 2021 Opt. Express 29 8816Google Scholar

    [21]

    Ma W Y, Yu S L, Zhao T G 2021 Opt. Commun. 493 127037Google Scholar

    [22]

    Yu F Y, Zhu J B, Shen X B 2022 Opt. Mater. 123 111745Google Scholar

    [23]

    Kharintsev S S, Battalova E I, Mukhametzyanov T A, Pushkarev A P, Scheblykin I G, Makarov S V, Potma E O, Fishman D A 2023 ACS Nano 17 9235Google Scholar

    [24]

    Lian M, Su Y, Liu K, Zhang S J, Chen X Y, Ren H A, Xu Y H, Chen J J, Tian Z, Cao T 2023 Adv. Opt. Mater. 11 2202439Google Scholar

    [25]

    Zhang P S, Deng X H, Tao L Y, Li P, Lu M, Guo F M, Song Y M, Yuan J R 2023 Opt. Mater. 138 113716Google Scholar

    [26]

    Feng Z J, Ni B, Ni H B, Zhou X Y, Yang L S, Chang J H 2023 J. Opt. Soc. Am. B 40 2174Google Scholar

    [27]

    Miao X, Xiao Z Y, Cui Z T, Zheng T T, Wang X Y 2023 Optik 281 170810Google Scholar

    [28]

    Dong T L, Zhang Y, Li Y, Tang Y P, He, X J 2023 Results Phys. 45 106246Google Scholar

  • [1] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态.  , 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [2] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性.  , 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面.  , 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [4] 于博, 庄书磊, 王正心, 王曼诗, 郭兰军, 李鑫煜, 郭文瑞, 苏文明, 龚诚, 刘伟伟. 基于纳米印刷技术的双螺旋太赫兹可调超表面.  , 2022, 71(11): 117801. doi: 10.7498/aps.71.20212408
    [5] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面.  , 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [6] 王明照, 王少杰, 许河秀. 基于剪纸方法的一种可重构线极化转换空间序构超表面.  , 2021, 70(15): 154101. doi: 10.7498/aps.70.20210188
    [7] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [8] 苏玉伦, 尉正行, 程亮, 齐静波. 基于超快自旋-电荷转换的太赫兹辐射源.  , 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [9] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器.  , 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [10] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [11] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生.  , 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [12] 杨鹏, 韩天成. 极化控制的双波段宽带红外吸收器研究.  , 2018, 67(10): 107801. doi: 10.7498/aps.67.20172716
    [13] 付亚男, 张新群, 赵国忠, 李永花, 于佳怡. 基于谐振环的太赫兹宽带偏振转换器件研究.  , 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [14] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元.  , 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [15] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计.  , 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [16] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面.  , 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [17] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计.  , 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [18] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面.  , 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [19] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射.  , 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [20] 邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名. 基于超材料的偏振不敏感太赫兹宽带吸波体设计.  , 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
计量
  • 文章访问数:  728
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-15
  • 修回日期:  2024-05-09
  • 上网日期:  2024-05-30
  • 刊出日期:  2024-07-20

/

返回文章
返回
Baidu
map