搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三角晶格自旋液体候选材料NaYbSe2在高压下的超导转变

郭琳 杨小帆 程二建 泮炳霖 朱楚楚 李世燕

引用本文:
Citation:

三角晶格自旋液体候选材料NaYbSe2在高压下的超导转变

郭琳, 杨小帆, 程二建, 泮炳霖, 朱楚楚, 李世燕

Pressure-induced superconductivity in triangular lattice spin liquid candidate NaYbSe2

Guo Lin, Yang Xiao-Fan, Cheng Er-Jian, Pan Bing-Lin, Zhu Chu-Chu, Li Shi-Yan
PDF
HTML
导出引用
  • 量子自旋液体是一种由于自旋阻挫直到零温都不能形成磁有序的新奇量子态, 并且和高温超导密切相关, 因此, 能否通过压力或化学掺杂等方式在量子自旋液体材料中调控出超导态甚至高温超导是一个重要的物理问题. 二维三角晶格稀土硫属化合物NaYbCh2 (Ch = O, S, Se)在比热、核磁共振、中子散射等实验中未出现长程磁有序, 被认为可能具有量子自旋液体基态. 本文研究了NaYbCh2 (Ch = Se, S, O)在压力下的电输运行为. 对于NaYbSe2, 当压力加到26.9 GPa时出现超导转变, 表现出零电阻行为, 其超导转变温度(Tc)约为5.6 K, 并且直到45 GPa都保持基本不变, 得出了其超导转变温度对压力的相图; 对于NaYbS2, 压力使其室温电阻从10 GPa下1011 Ω量级降低到67 GPa的10 Ω量级, 然而其电阻随温度行为没有出现金属性, 也没有发生超导转变; 而对于NaYbO2, 其从常压到60 GPa高压一直保持完全绝缘态, 没有可观测的电阻.
    Quantum spin liquid is an exotic state without magnetic order down to zero-temperature due to spin frustration, which is closely related to high temperature superconductivity. Therefore, an important issue arises whether the quantum spin liquid can be adjusted into a superconductor, even high-Tc superconductor, by using pressure or chemical doping. Rear-earth chalcogenides NaYbCh2 (Ch = O, S, Se), consisting of planar triangular lattice, exhibit no long-range magnetic order down to the lowest measured temperatures in specific heat, nuclear magnetic resonance, and neutron scattering, and are considered as a quantum spin liquid candidate. Here we investigate the electrical transport properties of NaYbCh2 (Ch = O, S, Se) under high pressures. For NaYbSe2, zero-resistance behavior is observed at 26.9 GPa, showing that the superconductivity comes into being. The superconducting transition temperature (Tc) is around 5.6 K at 26.9 GPa and robust against pressure till 45 GPa. The phase diagram of Tc versus pressure for NaYbSe2 is constructed. For NaYbS2, the room temperature resistance decreases from the order of 1011 Ω at 10 GPa to 10 Ω at 67 GPa. However, neither superconductivity nor insulator-metal transition is observed. Additionally, the NaYbO2 keeps insulating and the resistance is too large to be detected in a pressure range of 0–60 GPa.
      通信作者: 李世燕, shiyan_li@fudan.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1402203)和国家自然科学基金(批准号: 12034004)资助的课题.
      Corresponding author: Li Shi-Yan, shiyan_li@fudan.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1402203) and the National Natural Science Foundation of China (Grant No. 12034004).
    [1]

    Anderson P W 1973 Mater. Res. Bull. 8 153Google Scholar

    [2]

    Anderson P W 1987 Science 235 1196Google Scholar

    [3]

    Anderson P W, Baskaran G, Zou Z, Hsu T 1987 Phys. Rev. Lett. 58 2790Google Scholar

    [4]

    Savary L, Balents L 2017 Rep. Prog. Phys. 80 016502Google Scholar

    [5]

    Zhou Y, Kanoda K, Ng T K 2017 Rev. Mod. Phys. 89 025003Google Scholar

    [6]

    Balents L 2010 Nature 464 199Google Scholar

    [7]

    Li Y, Liao H Zhang Z, Li S, Jin F, Liang L, Zhang L, Zou Y, Pi L, Yang Z, Wang J, Wu Z, Zhang Q 2015 Sci. Rep. 5 16419Google Scholar

    [8]

    Shimizu Y, Miyagawa K, Kanoda K, Maesato M, Saito G 2003 Phys. Rev. Lett. 91 107001Google Scholar

    [9]

    Norman M R 2016 Rev. Mod. Phys. 88 041002Google Scholar

    [10]

    Banerjee A, Briges C A, Yan J Q, et al. 2016 Nat. Mater. 15 733Google Scholar

    [11]

    Zhong R, Gao T, Ong N P, Cava R J 2020 Sci. Adv. 6 eaay6953Google Scholar

    [12]

    郭静, 孙力玲 2015 64 217406Google Scholar

    Guo J, Sun L L 2015 Acta Phys. Sin. 64 217406Google Scholar

    [13]

    Qi Y, Sachdev S 2008 Phys. Rev. B 77 165112Google Scholar

    [14]

    Powell B J, McKenzie R H 2011 Rep. Prog. Phys. 74 056501Google Scholar

    [15]

    Kurosaki Y, Shimizu Y, Miyagawa K, Kanoda K, Saito G 2005 Phys. Rev. Lett. 95 177001Google Scholar

    [16]

    Shimizu Y, Hiramatsu T, Maesato M, Otsuka A, Yamochi H, Ono A, Itoh M, Yoshida M, Takigawa M, Yoshida Y, Saito G 2016 Phys. Rev. Lett. 117 107203Google Scholar

    [17]

    Jin C, Wang Y, Jin M, Jiang Z, Jiang D, Li J, Nakamoto Y, Shimizu K, Zhu J 2022 Phys. Rev. B 105 144402Google Scholar

    [18]

    Kozlenko D P, Kusmartseva A F, Lukin E V, Keen D A, Marshall W G, de Vries M A, Kamenev K V 2012 Phys. Rev. Lett. 108 187207Google Scholar

    [19]

    Kelly Z A, Gallagher M J, McQueen T M 2016 Phys. Rev. X 6 041007Google Scholar

    [20]

    Xi X, Bo X, Xu X S, Kong P P, Liu Z, Hong X G, Jin C Q, Cao G, Wan X, Carr G L 2018 Phys. Rev. B 98 125117Google Scholar

    [21]

    Layek S, Mehlawat K, Levy D, Greenberg E, Pasternak M P, Itié J P, Singh Y, Rozenberg G K 2020 Phys. Rev. B 102 085156Google Scholar

    [22]

    Wang Z, Guo J, Tafti F F, et al. 2018 Phys. Rev. B 97 245149Google Scholar

    [23]

    Liu W, Zhang Z, Ji J, Liu Y, Li J, Wang X, Lei H, Chen G, Zhang Q 2018 Chin. Phys. Lett. 35 117501Google Scholar

    [24]

    Baenitz M, Schlender Ph, Sichelschmidt J, Onykiienko Y A, Zangeneh Z, Ranjith K M, Sarkar R, Hozoi L, Walker H C, Orain J C, Yasuoka H, van den Brink J, Klauss H H, Inosov D S, Doert Th 2018 Phys. Rev. B 98 220409Google Scholar

    [25]

    Dai P L, Zhang G, Xie Y, Duan C, Gao Y, Zhu Z, Feng E, Tao Z, Huang C L, Cao H, Podlesnyak A, Granroth G E, Everett M S, Neuefeind J C, Voneshen D, Wang S, Tan G, Morosan E, Wang X, Lin H Q, Shu L, Chen G, Guo Y, Lu X, Dai P 2021 Phys. Rev. X 11 021044Google Scholar

    [26]

    Zhang Z, Ma X, Li J, Wang G, Adroja D T, Perring T P, Liu W, Jin F, Ji J, Wang Y, Kamiya Y, Wang X, Ma J, Zhang Q 2021 Phys. Rev. B 103 035144Google Scholar

    [27]

    Bordelon M, Liu C, Posthuma L, Sarte P M, Butch N P, Pajerowski D M, Banerjee A, Balents L, Wilson S D 2020 Phys. Rev. B 101 224427Google Scholar

    [28]

    Bordelon M M, Kenney E, Liu C, Hogan T, Posthuma L, Kavand M, Lyu Y, Sherwin M, Butch N P, Brown C, Graf M J, Balents L, Wilson S D 2019 Nat. Phys. 15 1058Google Scholar

    [29]

    Jia Y T, Gong C S, Liu Y X, Zhao J F, Dong C, Dai G Y, Li X D, Lei H C, Yu R Z, Zhang G M, Jin C Q 2020 Chin. Phys. Lett. 37 097404Google Scholar

    [30]

    Zhang Z, Yin Y, Ma X, Liu W, Li J, Jin F, Ji J, Wang Y, Wang X, Yu X, Zhang Q 2020 arXiv: 2003.11479v1

    [31]

    Schleid T, Lissner F 1993 Eur. J. Sol. State Inorg. Chem. 30 829

    [32]

    Gray A K, Martin B R, Dorhout P K 2003 Z. Kristallor.-New Cryst. Struct. 218 19

    [33]

    Akahama Y, Kobayashi M, Kawamura H 1992 Solid State Commun. 84 803Google Scholar

    [34]

    Yang P T, Liu Z Y, Chen K Y, Liu X L, Zhang X, Yu Z H, Zhang H, Sun J P, Uwatoko Y, Dong X L, Jiang K, Hu J P, Guo Y F, Wang B S, Cheng J G 2022 Nat. Commun. 13 2975Google Scholar

  • 图 1  (a) NaYbSe2/NaYbS2的晶体结构图; (b) NaYbSe2单晶的XRD谱; (c) NaYbSe2粉末的XRD谱

    Fig. 1.  (a) Crystal structure of NaYbSe2/NaYbS2; (b) XRD patten of NaYbSe2 single crystal; (c) XRD patten of NaYbSe2 powder.

    图 2  (a) 不同压力下NaYbSe2电阻随温度的依赖关系, 其中17.9 GPa的R(T)曲线的值为$R\times {1}/{4}$; (b) 26.9—45.4 GPa压力范围内, NaYbSe2在低温下的超导转变及其TconsetTczero

    Fig. 2.  (a) Temperature dependence of the resistance for NaYbSe2 under various pressures. The resistance values at 17.9 GPa are $R\times {1}/{4}$. (b) Superconducting transition of NaYbSe2 at low temperature between 26.9 and 45.4 GPa. The arrows indicate the Tconset and Tczero.

    图 3  (a) 外加压力为26.9 GPa时NaYbSe2在不同磁场下的低温电阻随温度的依赖关系; (b) NaYbSe2上临界磁场随温度的依赖关系

    Fig. 3.  (a) With the pressure of 26.9 GPa, the temperature dependence of the resistance for NaYbSe2 at low temperature under different magnetic fields; (b) temperature dependence of the upper critical field for NaYbSe2

    图 4  NaYbSe2的压力-温度相图, 图中红色方点代表不同压力下NaYbSe2Tc, 蓝色圆点代表不同压力下Se的Tc

    Fig. 4.  Pressure-temperature phase diagram of NaYbSe2. The red square dots denote Tc of NaYbSe2 under different pressures. The blue circle dots denote Tc of Se under different pressures.

    图 5  (a) 不同压力下NaYbS2样品电阻随温度的依赖关系; (b) 300 K时NaYbS2样品的电阻随压力的依赖关系

    Fig. 5.  (a) Temperature dependence of the resistance for NaYbS2 under various pressure; (b) pressure dependence of the resistance for NaYbS2 at 300 K

    Baidu
  • [1]

    Anderson P W 1973 Mater. Res. Bull. 8 153Google Scholar

    [2]

    Anderson P W 1987 Science 235 1196Google Scholar

    [3]

    Anderson P W, Baskaran G, Zou Z, Hsu T 1987 Phys. Rev. Lett. 58 2790Google Scholar

    [4]

    Savary L, Balents L 2017 Rep. Prog. Phys. 80 016502Google Scholar

    [5]

    Zhou Y, Kanoda K, Ng T K 2017 Rev. Mod. Phys. 89 025003Google Scholar

    [6]

    Balents L 2010 Nature 464 199Google Scholar

    [7]

    Li Y, Liao H Zhang Z, Li S, Jin F, Liang L, Zhang L, Zou Y, Pi L, Yang Z, Wang J, Wu Z, Zhang Q 2015 Sci. Rep. 5 16419Google Scholar

    [8]

    Shimizu Y, Miyagawa K, Kanoda K, Maesato M, Saito G 2003 Phys. Rev. Lett. 91 107001Google Scholar

    [9]

    Norman M R 2016 Rev. Mod. Phys. 88 041002Google Scholar

    [10]

    Banerjee A, Briges C A, Yan J Q, et al. 2016 Nat. Mater. 15 733Google Scholar

    [11]

    Zhong R, Gao T, Ong N P, Cava R J 2020 Sci. Adv. 6 eaay6953Google Scholar

    [12]

    郭静, 孙力玲 2015 64 217406Google Scholar

    Guo J, Sun L L 2015 Acta Phys. Sin. 64 217406Google Scholar

    [13]

    Qi Y, Sachdev S 2008 Phys. Rev. B 77 165112Google Scholar

    [14]

    Powell B J, McKenzie R H 2011 Rep. Prog. Phys. 74 056501Google Scholar

    [15]

    Kurosaki Y, Shimizu Y, Miyagawa K, Kanoda K, Saito G 2005 Phys. Rev. Lett. 95 177001Google Scholar

    [16]

    Shimizu Y, Hiramatsu T, Maesato M, Otsuka A, Yamochi H, Ono A, Itoh M, Yoshida M, Takigawa M, Yoshida Y, Saito G 2016 Phys. Rev. Lett. 117 107203Google Scholar

    [17]

    Jin C, Wang Y, Jin M, Jiang Z, Jiang D, Li J, Nakamoto Y, Shimizu K, Zhu J 2022 Phys. Rev. B 105 144402Google Scholar

    [18]

    Kozlenko D P, Kusmartseva A F, Lukin E V, Keen D A, Marshall W G, de Vries M A, Kamenev K V 2012 Phys. Rev. Lett. 108 187207Google Scholar

    [19]

    Kelly Z A, Gallagher M J, McQueen T M 2016 Phys. Rev. X 6 041007Google Scholar

    [20]

    Xi X, Bo X, Xu X S, Kong P P, Liu Z, Hong X G, Jin C Q, Cao G, Wan X, Carr G L 2018 Phys. Rev. B 98 125117Google Scholar

    [21]

    Layek S, Mehlawat K, Levy D, Greenberg E, Pasternak M P, Itié J P, Singh Y, Rozenberg G K 2020 Phys. Rev. B 102 085156Google Scholar

    [22]

    Wang Z, Guo J, Tafti F F, et al. 2018 Phys. Rev. B 97 245149Google Scholar

    [23]

    Liu W, Zhang Z, Ji J, Liu Y, Li J, Wang X, Lei H, Chen G, Zhang Q 2018 Chin. Phys. Lett. 35 117501Google Scholar

    [24]

    Baenitz M, Schlender Ph, Sichelschmidt J, Onykiienko Y A, Zangeneh Z, Ranjith K M, Sarkar R, Hozoi L, Walker H C, Orain J C, Yasuoka H, van den Brink J, Klauss H H, Inosov D S, Doert Th 2018 Phys. Rev. B 98 220409Google Scholar

    [25]

    Dai P L, Zhang G, Xie Y, Duan C, Gao Y, Zhu Z, Feng E, Tao Z, Huang C L, Cao H, Podlesnyak A, Granroth G E, Everett M S, Neuefeind J C, Voneshen D, Wang S, Tan G, Morosan E, Wang X, Lin H Q, Shu L, Chen G, Guo Y, Lu X, Dai P 2021 Phys. Rev. X 11 021044Google Scholar

    [26]

    Zhang Z, Ma X, Li J, Wang G, Adroja D T, Perring T P, Liu W, Jin F, Ji J, Wang Y, Kamiya Y, Wang X, Ma J, Zhang Q 2021 Phys. Rev. B 103 035144Google Scholar

    [27]

    Bordelon M, Liu C, Posthuma L, Sarte P M, Butch N P, Pajerowski D M, Banerjee A, Balents L, Wilson S D 2020 Phys. Rev. B 101 224427Google Scholar

    [28]

    Bordelon M M, Kenney E, Liu C, Hogan T, Posthuma L, Kavand M, Lyu Y, Sherwin M, Butch N P, Brown C, Graf M J, Balents L, Wilson S D 2019 Nat. Phys. 15 1058Google Scholar

    [29]

    Jia Y T, Gong C S, Liu Y X, Zhao J F, Dong C, Dai G Y, Li X D, Lei H C, Yu R Z, Zhang G M, Jin C Q 2020 Chin. Phys. Lett. 37 097404Google Scholar

    [30]

    Zhang Z, Yin Y, Ma X, Liu W, Li J, Jin F, Ji J, Wang Y, Wang X, Yu X, Zhang Q 2020 arXiv: 2003.11479v1

    [31]

    Schleid T, Lissner F 1993 Eur. J. Sol. State Inorg. Chem. 30 829

    [32]

    Gray A K, Martin B R, Dorhout P K 2003 Z. Kristallor.-New Cryst. Struct. 218 19

    [33]

    Akahama Y, Kobayashi M, Kawamura H 1992 Solid State Commun. 84 803Google Scholar

    [34]

    Yang P T, Liu Z Y, Chen K Y, Liu X L, Zhang X, Yu Z H, Zhang H, Sun J P, Uwatoko Y, Dong X L, Jiang K, Hu J P, Guo Y F, Wang B S, Cheng J G 2022 Nat. Commun. 13 2975Google Scholar

  • [1] 王颖, 殳蕾. μSR实验进展与缪子源发展趋势.  , 2024, 73(19): 197601. doi: 10.7498/aps.73.20240940
    [2] 赵俊, 姚璨, 曾晖. 新型正交相BN单层半导体有毒气体吸附性能及电输运性能的理论研究.  , 2024, 73(12): 126802. doi: 10.7498/aps.73.20231621
    [3] 王飞, 李全军, 胡阔, 刘冰冰. 高压导致纳米TiO2形变的电子显微研究.  , 2023, 72(3): 036201. doi: 10.7498/aps.72.20221656
    [4] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量.  , 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [5] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下TiO2纳米线晶粒和晶界性质及电输运行为.  , 2022, 71(9): 096101. doi: 10.7498/aps.71.20212276
    [6] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理.  , 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [7] 陈亚琦, 许华慨, 唐东升, 余芳, 雷乐, 欧阳钢. 单根SnO2纳米线器件的电输运性能及其机理研究.  , 2018, 67(24): 246801. doi: 10.7498/aps.67.20181402
    [8] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究.  , 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [9] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术.  , 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [10] 齐伟华, 马丽, 李壮志, 唐贵德, 吴光恒. 金属价电子结构对磁性和电输运性质的影响.  , 2017, 66(2): 027101. doi: 10.7498/aps.66.027101
    [11] 白继元, 贺泽龙, 李立, 韩桂华, 张彬林, 姜平晖, 樊玉环. 两端线型双量子点分子Aharonov-Bohm干涉仪电输运.  , 2015, 64(20): 207304. doi: 10.7498/aps.64.207304
    [12] 吴宝嘉, 李燕, 彭刚, 高春晓. InSe的高压电输运性质研究.  , 2013, 62(14): 140702. doi: 10.7498/aps.62.140702
    [13] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振.  , 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [14] 张飞鹏, 张忻, 路清梅, 刘燕琴, 张久兴. Ca位置换Fe的氧化物Ca1-xFexMnO3(x=00.12)的制备及电输运性能.  , 2011, 60(8): 087205. doi: 10.7498/aps.60.087205
    [15] 丁磊, 王聪, 褚立华, 纳元元, 闫君. 反钙钛矿Mn3AX化合物的晶格、磁性和电输运性质的研究进展.  , 2011, 60(9): 097507. doi: 10.7498/aps.60.097507
    [16] 吴宝嘉, 韩永昊, 彭刚, 刘才龙, 王月, 高春晓. 原位高压微米氧化锌电学性质的研究.  , 2010, 59(6): 4235-4239. doi: 10.7498/aps.59.4235
    [17] 张飞鹏, 张忻, 路清梅, 张久兴. Ca3-x AgxCo4O9(x=0—0.05)氧化物的电输运性能.  , 2010, 59(6): 4211-4215. doi: 10.7498/aps.59.4211
    [18] 宋超, 陈谷然, 徐骏, 王涛, 孙红程, 刘宇, 李伟, 陈坤基. 不同退火温度下晶化硅薄膜的电学输运性质.  , 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [19] 熊昌民, 孙继荣, 王登京, 沈保根. 厚度与应变效应对La0.67Ca0.33MnO3薄膜电输运与居里温度的影响.  , 2004, 53(11): 3909-3915. doi: 10.7498/aps.53.3909
    [20] 徐刚毅, 王天民, 何宇亮, 马智训, 郑国珍. 纳米硅薄膜的低温电输运机制.  , 2000, 49(9): 1798-1803. doi: 10.7498/aps.49.1798
计量
  • 文章访问数:  4015
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-05
  • 修回日期:  2023-05-28
  • 上网日期:  2023-06-06
  • 刊出日期:  2023-08-05

/

返回文章
返回
Baidu
map