-
设计了一种3层结构的太赫兹编码超表面, 其顶部是嵌入VO2的金属十字架结构, 中间是聚酰亚胺, 底部为纯金属. 利用该编码超表面的各向异性特点, 可以实现对正交极化波(x极化波和y极化波)的独立调控; 通过在编码超表面中引入VO2材料, 改变其相变状态, 可进一步增加调控的灵活性. 对设计的超表面进行建模仿真和分析, 结果表明: 对于垂直入射的1 THz正交极化波, VO2处于绝缘态时, 设计的超表面可视为2 bit的各向异性编码超表面, 产生模式为1和2的涡旋波; VO2处于金属态时, 设计的超表面可视为1 bit的各向异性编码超表面, 产生对称的2束反射波和4束反射波. 所提出的各向异性和相变材料结合的方法, 实现了同一超表面上产生多种不同形式太赫兹波束的功能, 一定程度上解决了超表面调控太赫兹波形式单一的问题, 为实现能够灵活应用于多种场景的多功能编码超表面提供了参考.Terahertz (THz) wave has the advantages of high resolution, large information capacity, easy beam focusing, etc, and can be used in the fields of communication, radar, detection and others. Firstly, as a two-dimensional artificial electromagnetic metamaterial, the coding metasurface is proposed in the microwave band. It uses the digital coding of the electromagnetic wave phase to adjust electromagnetic waves. Subsequently, as an important way to regulate THz, the metasurface extends to terahertz frequency band and becomes a research hotspot. In this paper, we design a coding metasurface based on vanadium dioxide (VO2) with anisotropic characteristics. It is composed of three layers, with a metal cross structure embedded in VO2 at the top, polyimide in the middle, and pure metal at the bottom. The design of the cross shaped structure makes the coding metasurface unit anisotropic, which can provide complete and independent control of the orthogonally linearly polarized incident waves. The pure metal structure at the bottom can provide higher reflection amplitude for the incident wave. And VO2 is introduced into the coding metasurface. As a phase change material, VO2 can switch its properties between the insulating state and the metallic state, which further increases the flexibility of coding metasurface to regulate THz wave. Eight different coding metasurface units are designed in this work. They can be arranged according to a reasonable coding sequence to form a coding metasurface, which consisits of 20×20 metasurface units with an overall size of 2.4 mm × 2.4 mm. Its coding sequence will be changed with the phase of VO2, thus forming a corresponding 1 bit or 2 bit coding metasurface, and the generated beam form changes accordingly. The finite-difference time domain method is used for modeling and implementing simulation, and the results are as follows. The 1-THz orthogonal linearly polarized wave is vertically incident on the coding metasurface. When VO2 is in the insulating state, the designed metasurface can be regarded as an anisotropic 2 bit coding metasurface to generate dual-polarization orbital angular momentum (OAM) vortex beams. The x-polarized vortex wave has an OAM mode number of 2, and the y-polarized vortex wave possesses an OAM mode number of 1. When VO2 is in the metallic state, the designed metasurface can be regarded as an anisotropic 1 bit coding metasurface to generate dual-polarization symmetrical beams. Four reflected waves are generated by incident x-polarized waves, and two reflected waves are created by incident y-polarized waves. The proposed method of combining anisotropy material and phase change material realizes the function of generating multiple THz beams in different forms on the same metasurface. The present results provide a reference for the implementation of multi-functional coding metasurface that can be flexibly applied to multiple scenes.
-
Keywords:
- terahertz /
- coding metasurface /
- VO2 /
- anisotropy
[1] Kleine Ostmann T, Nagatsuma T 2011 J. Infrared Milli. Terahz Waves 32 143Google Scholar
[2] Tonouchi M 2007 Nature Photon. 1 97Google Scholar
[3] Yang X, Pi Y M, Liu T, Wang H J 2018 IEEE Sens. J. 18 1063Google Scholar
[4] Yang Q, Qin Y, Zhang K, Deng B, Wang X, Wang H 2017 Microw. Opt. Technol. Lett. 59 2048Google Scholar
[5] Nagel M, Haring B P, Brucherseifer M, Kurz H, Bosserhoff A, Büttner R 2002 Appl. Phys. Lett. 80 154Google Scholar
[6] 贺敬文, 董涛, 张岩 2020 红外与激光工程 49 69
He J W, Dong T, Zhang Y 2020 Infrared Laser Eng. 49 69
[7] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[8] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-sci. Appl. 3 e218Google Scholar
[9] 白毅华, 吕浩然, 付鑫, 杨元杰 2022 中国光学快报 20 012601Google Scholar
Bai Y H, Lü H R, Fu X, Yang Y J 2022 Chin. Opt. Lett. 20 012601Google Scholar
[10] Huang H F, Xie S H 2021 OSA Continuum. 4 2082Google Scholar
[11] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨 2020 69 228101Google Scholar
Li J H, Zhang Y T, Li J N, Li J, Li J T, Zheng C L, Yang Y, Huang J, Ma Z Z, Ma C Q, Hao X R, Yao J Q 2020 Acta Phys. Sin. 69 228101Google Scholar
[12] Pan Y B, Lan F, Zhang Y X, Zeng H X, Wang L Y, Song T Y, He G J, Yang Z Q 2022 Photonics Res. 10 416Google Scholar
[13] Liu S, Cui T J, Xu Q, Bao D, Du L L, Wan X, Tang W X, Ouyang C M, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J G, Zhang W L, Cheng Q 2016 Light Sci. Appl. 5 e16076Google Scholar
[14] Yu S X, Li L, Shi G M 2016 Appl. Phys. Express 9 082202Google Scholar
[15] Li Z L, Wang W, Deng S X, Qu J, Li Y X, Lü B, Li W J, Gao X, Zhu Z, Guan C Y, Shi J H 2022 Opt. Lett. 47 441Google Scholar
[16] Li J S, Li S H, Yao J Q 2020 Opt. Commun. 461 125186Google Scholar
[17] Yasir Saifullah, 杨国敏, 徐丰 2021 雷达学报 10 382Google Scholar
Yasir S, Yang G M, Xu F 2021 J. Radars 10 382Google Scholar
[18] 唐小燕, 柯友煌, 井绪峰, 别寻, 李晨霞, 洪治 2021 光子学报 50 150
Tang X Y, Ke Y H, Jing X F, Bie X, Li C X, Hong Z 2021 Acta Photon. Sin. 50 150
[19] Wang H, Ling F, Zhang B 2020 Opt. Express 28 36316Google Scholar
[20] Li C Q, He C H, Song Z Y 2022 IEEE Photon. J. 14 1Google Scholar
[21] 杨欢欢, 曹祥玉, 高军, 李桐, 李思佳, 丛丽丽, 赵霞 2021 雷达学报 10 206Google Scholar
Yang H H, Cao X Y, Gao J, Li T, Li S J, Cong L L, Zhao X 2021 J. Radars 10 206Google Scholar
[22] Bai X D 2020 Results in Phys. 18 103334Google Scholar
[23] Li J S, Chen Y 2022 Appl. Opt. 61 4140Google Scholar
[24] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨 2015 64 158101Google Scholar
Yan X, Liang L J, Zhang Y T, Ding X, Yao J Q 2015 Acta Phys. Sin. 64 158101Google Scholar
[25] Li J H, Zhang Y T, Li J N, Li J, Yang Y, Huang J, Ma C Q, Ma Z Z, Zhang Z, Liang L J, Yao J Q 2020 Opti. Commun. 458 124744Google Scholar
[26] Ren Z R, Liu Y Q, Wang Y, Lu L, Qi K N, Yin H C 2022 IEEE Access 10 50479Google Scholar
[27] Wu L W, Ma H F, Gou Y, Wu R Y, Wang Z X, Xiao Q, Cui T J 2022 Nanophotonics 11 2977Google Scholar
[28] 封覃银, 裘国华, 严德贤, 李吉宁, 李向军 2022 中国光学 15 387
Feng T Y, Qiu G H, Yan D X, Li J N, Li X J 2022 Chin. Opt. 15 387
[29] Liu X B, Wang Q, Zhang X Q, Li H, Xu Q, Xu Y H, Chen X Y, Li S X, Liu M, Tian Z, Zhang C H, Zou C W, Han J G, Zhang W L 2019 Adv. Opt. Mater. 12 1900175
[30] 张璋 2020 博士学位论文 (天津: 天津大学)
Zhang Z 2020 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)
-
图 3 (a)—(d) VO2处于绝缘态时, 单元在正交极化波垂直入射下的反射幅度和反射相位 (a), (b) x极化波; (c), (d) y极化波. (e)—(h) VO2处于金属态时, 单元在正交极化波垂直入射下的反射幅度和反射相位 (e), (f) x极化波; (g), (h) y极化波
Fig. 3. (a)–(d) When VO2 is insulating state, the reflection amplitude and phase of the units under the vertical incidence of the orthogonal polarized wave: (a), (b) x-polarized wave; (c), (d) y-polarized wave. (e)–(h) When VO2 is metallic state, the reflection amplitude and phase of the units under the vertical incidence of the orthogonal polarized wave: (e), (f) x-polarized wave; (g), (h) y-polarized wave.
图 4 (a)各向异性编码超表面编码序列; (b)各向异性编码超表面示意图; (c), (d) VO2为绝缘态, x极化波(c)与y极化波(d)垂直入射时的编码序列; (e), (f) VO2为金属态, x极化波(e)与y极化波(f)垂直入射时的编码序列
Fig. 4. (a) Anisotropic coding metasurface coding sequences; (b) diagram of anisotropic coding metasurface; (c), (d) VO2 is insulating state, the coding sequence when the x-polarized wave (c) and y-polarized wave (d) are incident vertically; (e), (f) VO2 is metallic state, the coding sequence when the x-polarized wave (e) and y-polarized wave (f) are incident vertically
表 1 8个编码超表面单元结构参数
Table 1. Structure parameters of eight coding metasurface units.
单元 1A 1B 2C 2D 3A 3B 4C 4D X/μm 60 76 81 96 60 76 81 96 Y/μm 60 60 76 76 81 81 96 96 M/μm 76 76 96 96 76 76 96 96 N/μm 76 76 76 76 96 96 96 96 表 2 不同状态下的波束形式
Table 2. Beam form in different states.
正交极化波入射 x极化波入射 y极化波入射 VO2绝缘态 l = 2的涡旋波 l = 1的涡旋波 VO2金属态 对称的4束反射波 对称的2束反射波 表 3 编码超表面的设计方法及性能对比
Table 3. Design methods and performance comparison of coding metasurface.
-
[1] Kleine Ostmann T, Nagatsuma T 2011 J. Infrared Milli. Terahz Waves 32 143Google Scholar
[2] Tonouchi M 2007 Nature Photon. 1 97Google Scholar
[3] Yang X, Pi Y M, Liu T, Wang H J 2018 IEEE Sens. J. 18 1063Google Scholar
[4] Yang Q, Qin Y, Zhang K, Deng B, Wang X, Wang H 2017 Microw. Opt. Technol. Lett. 59 2048Google Scholar
[5] Nagel M, Haring B P, Brucherseifer M, Kurz H, Bosserhoff A, Büttner R 2002 Appl. Phys. Lett. 80 154Google Scholar
[6] 贺敬文, 董涛, 张岩 2020 红外与激光工程 49 69
He J W, Dong T, Zhang Y 2020 Infrared Laser Eng. 49 69
[7] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[8] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-sci. Appl. 3 e218Google Scholar
[9] 白毅华, 吕浩然, 付鑫, 杨元杰 2022 中国光学快报 20 012601Google Scholar
Bai Y H, Lü H R, Fu X, Yang Y J 2022 Chin. Opt. Lett. 20 012601Google Scholar
[10] Huang H F, Xie S H 2021 OSA Continuum. 4 2082Google Scholar
[11] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨 2020 69 228101Google Scholar
Li J H, Zhang Y T, Li J N, Li J, Li J T, Zheng C L, Yang Y, Huang J, Ma Z Z, Ma C Q, Hao X R, Yao J Q 2020 Acta Phys. Sin. 69 228101Google Scholar
[12] Pan Y B, Lan F, Zhang Y X, Zeng H X, Wang L Y, Song T Y, He G J, Yang Z Q 2022 Photonics Res. 10 416Google Scholar
[13] Liu S, Cui T J, Xu Q, Bao D, Du L L, Wan X, Tang W X, Ouyang C M, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J G, Zhang W L, Cheng Q 2016 Light Sci. Appl. 5 e16076Google Scholar
[14] Yu S X, Li L, Shi G M 2016 Appl. Phys. Express 9 082202Google Scholar
[15] Li Z L, Wang W, Deng S X, Qu J, Li Y X, Lü B, Li W J, Gao X, Zhu Z, Guan C Y, Shi J H 2022 Opt. Lett. 47 441Google Scholar
[16] Li J S, Li S H, Yao J Q 2020 Opt. Commun. 461 125186Google Scholar
[17] Yasir Saifullah, 杨国敏, 徐丰 2021 雷达学报 10 382Google Scholar
Yasir S, Yang G M, Xu F 2021 J. Radars 10 382Google Scholar
[18] 唐小燕, 柯友煌, 井绪峰, 别寻, 李晨霞, 洪治 2021 光子学报 50 150
Tang X Y, Ke Y H, Jing X F, Bie X, Li C X, Hong Z 2021 Acta Photon. Sin. 50 150
[19] Wang H, Ling F, Zhang B 2020 Opt. Express 28 36316Google Scholar
[20] Li C Q, He C H, Song Z Y 2022 IEEE Photon. J. 14 1Google Scholar
[21] 杨欢欢, 曹祥玉, 高军, 李桐, 李思佳, 丛丽丽, 赵霞 2021 雷达学报 10 206Google Scholar
Yang H H, Cao X Y, Gao J, Li T, Li S J, Cong L L, Zhao X 2021 J. Radars 10 206Google Scholar
[22] Bai X D 2020 Results in Phys. 18 103334Google Scholar
[23] Li J S, Chen Y 2022 Appl. Opt. 61 4140Google Scholar
[24] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨 2015 64 158101Google Scholar
Yan X, Liang L J, Zhang Y T, Ding X, Yao J Q 2015 Acta Phys. Sin. 64 158101Google Scholar
[25] Li J H, Zhang Y T, Li J N, Li J, Yang Y, Huang J, Ma C Q, Ma Z Z, Zhang Z, Liang L J, Yao J Q 2020 Opti. Commun. 458 124744Google Scholar
[26] Ren Z R, Liu Y Q, Wang Y, Lu L, Qi K N, Yin H C 2022 IEEE Access 10 50479Google Scholar
[27] Wu L W, Ma H F, Gou Y, Wu R Y, Wang Z X, Xiao Q, Cui T J 2022 Nanophotonics 11 2977Google Scholar
[28] 封覃银, 裘国华, 严德贤, 李吉宁, 李向军 2022 中国光学 15 387
Feng T Y, Qiu G H, Yan D X, Li J N, Li X J 2022 Chin. Opt. 15 387
[29] Liu X B, Wang Q, Zhang X Q, Li H, Xu Q, Xu Y H, Chen X Y, Li S X, Liu M, Tian Z, Zhang C H, Zou C W, Han J G, Zhang W L 2019 Adv. Opt. Mater. 12 1900175
[30] 张璋 2020 博士学位论文 (天津: 天津大学)
Zhang Z 2020 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)
计量
- 文章访问数: 3689
- PDF下载量: 125
- 被引次数: 0