搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维层状热电材料研究进展

余泽浩 张力发 吴靖 赵云山

引用本文:
Citation:

二维层状热电材料研究进展

余泽浩, 张力发, 吴靖, 赵云山

Recent progress of 2-dimensional layered thermoelectric materials

Yu Ze-Hao, Zhang Li-Fa, Wu Jing, Zhao Yun-Shan
PDF
HTML
导出引用
  • 当今世界能源浪费巨大, 其中绝大多数以废热的形式被浪费掉. 热电效应可以将热能转换为电能并且没有危险物质的释放, 因此热电效应的应用吸引了越来越多人的兴趣. 自从石墨烯被发现以来, 越来越多的二维层状材料被报道, 它们通常比体块材料有着更加优越的电学、光学等物理性质, 而新的理论和实验技术的发展, 也促进了人们对于它们的研究. 在本文中, 首先介绍了基于二维材料热电性质的测量方法和测试技术, 并对其测试中具有挑战性的问题进行讨论. 随后对石墨烯、过渡金属硫化物、黑磷等材料的热电应用进行了介绍. 最后, 讨论了提升热电性能的各种策略与亟待解决的问题, 并对此做出展望.
    Nowadays, there are enormous amounts of energy wasted in the world, most of which is in the form of wasted heat. Thermoelectric effect, by converting heat energy into electricity without releasing dangerous substances, has aroused more and more interest from researchers. Since the discovery of graphene, more and more two-dimensional layered materials have been reported, which typically own superior electrical, optical and other physical properties over the bulk materials, and the development of the new theory and experimental technologies stimulates further research for them as well. In this work, first we introduce the measurement methods and techniques that are suitable for characterizing the thermoelectric properties of two-dimensional materials, and then discuss the relevant current challenging issues. Subsequently, graphene, transition metal disulfides, black phosphorus and other 2-dimensional materials in thermoelectric applications are introduced. Finally, we discuss the various strategies to improve the thermoelectric performance and the problems that need solving urgently.
      通信作者: 张力发, phyzlf@njnu.edu.cn ; 吴靖, wujing@imre.a-star.edu.sg ; 赵云山, phyzys@njnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12204244)、江苏省自然科学基金(批准号: BK20210556)和江苏省特聘教授项目资助的课题
      Corresponding author: Zhang Li-Fa, phyzlf@njnu.edu.cn ; Wu Jing, wujing@imre.a-star.edu.sg ; Zhao Yun-Shan, phyzys@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12204244), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20210556), and the Jiangsu Specially-Appointed Professor Program, China.
    [1]

    Dresselhaus M S, Chen G, Tang M Y, Yang R, Lee H, Wang D, Ren Z, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043Google Scholar

    [2]

    Kim R, Datta S, Lundstrom M S 2009 J. Appl. Phys. 105 034506Google Scholar

    [3]

    Maassen J, Lundstrom M 2013 Appl. Phys. Lett. 102 093103Google Scholar

    [4]

    Pichanusakorn P, Bandaru P 2010 Mater. Sci. Eng. , R 67 19Google Scholar

    [5]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 16631Google Scholar

    [6]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727Google Scholar

    [7]

    Song H, Liu J, Liu B, Wu J, Cheng H M, Kang F 2018 Joule 2 442Google Scholar

    [8]

    Ioffe A F, Stil'Bans L, Iordanishvili E, Stavitskaya T, Gelbtuch A, Vineyard G 1959 Phys. Today 12 42

    [9]

    Wood C 1988 Rep. Prog. Phys. 51 459Google Scholar

    [10]

    Wu J, Chen Y, Wu J, Hippalgaonkar K 2018 Adv. Electron. Mater. 4 1800248Google Scholar

    [11]

    Graf M J, Yip S K, Sauls J A, Rainer D 1996 Phys. Rev. B 53 15147Google Scholar

    [12]

    Jonson M, Mahan G D 1980 Phys. Rev. B 21 4223Google Scholar

    [13]

    Mao J, Liu Z, Ren Z 2016 NPJ Quantum Mater. 1 16028Google Scholar

    [14]

    Cutler M, Mott N F 1969 Phys. Rev. 181 1336Google Scholar

    [15]

    Zuev Y M, Chang W, Kim P 2009 Phys. Rev. Lett. 102 096807Google Scholar

    [16]

    Sun P, Wei B, Zhang J, Tomczak J M, Strydom A, Søndergaard M, Iversen B B, Steglich F 2015 Nat. Commun. 6 7475Google Scholar

    [17]

    Mahan G, Sofo J 1996 PNAS 93 7436Google Scholar

    [18]

    Sootsman J R, Chung D Y, Kanatzidis M G 2009 Angew. Chem. Int. Ed. 48 8616Google Scholar

    [19]

    Ishida A, Cao D, Morioka S, Veis M, Inoue Y, Kita T 2008 Appl. Phys. Lett. 92 182105Google Scholar

    [20]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554Google Scholar

    [21]

    Lee G H, Cooper R C, An S J, Lee S, Van Der Zande A, Petrone N, Hammerberg A G, Lee C, Crawford B, Oliver W 2013 Science 340 1073Google Scholar

    [22]

    吴祥冰, 汤雯婷, 徐象繁 2020 69 196602Google Scholar

    Wu X, Tang W, Xu X 2020 Acta Phys. Sin. 69 196602Google Scholar

    [23]

    Choi S J, Kim B K, Lee T H, Kim Y H, Li Z, Pop E, Kim J J, Song J H, Bae M H 2016 Nano Lett. 16 3969Google Scholar

    [24]

    Yang F, Wu J, Suwardi A, Zhao Y, Liang B, Jiang J, Xu J, Chi D, Hippalgaonkar K, Lu J 2021 Adv. Mater. 33 2004786Google Scholar

    [25]

    Saito Y, Iizuka T, Koretsune T, Arita R, Shimizu S, Iwasa Y 2016 Nano Lett. 16 4819Google Scholar

    [26]

    Aiyiti A, Bai X, Wu J, Xu X, Li B 2018 Sci. Bull. 63 452Google Scholar

    [27]

    Wang H, Zheng D, Zhang X, Takamatsu H, Hu W 2017 RSC Adv. 7 25298Google Scholar

    [28]

    Kayyalha M, Maassen J, Lundstrom M, Shi L, Chen Y P 2016 J. Appl. Phys. 120 134305Google Scholar

    [29]

    Klarskov M B, Dam H F, Petersen D H, Hansen T M, Löwenborg A, Booth T, Schmidt M S, Lin R, Nielsen P, Bøggild P 2011 Nanotechnology 22 445702Google Scholar

    [30]

    Yoshimoto S, Murata Y, Kubo K, Tomita K, Motoyoshi K, Kimura T, Okino H, Hobara R, Matsuda I, Honda S, Katayama M, Hasegawa S 2007 Nano Lett. 7 956Google Scholar

    [31]

    Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H 2012 Nano Lett. 12 1538Google Scholar

    [32]

    Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J 2012 Adv. Mater. 24 2320Google Scholar

    [33]

    Wang H, Yu L, Lee Y H, Fang W, Hsu A, Herring P, Chin M, Dubey M, Li L J, Kong J, Palacios T 2012 International Electron Devices Meeting (IEDM) San Francisco, CA, December 10-13, 2012, pp4.6.1–4.6. 4

    [34]

    Podzorov V, Gershenson M, Kloc C, Zeis R, Bucher E 2004 Appl. Phys. Lett. 84 3301Google Scholar

    [35]

    Hippalgaonkar K, Wang Y, Ye Y, Qiu D Y, Zhu H, Wang Y, Moore J, Louie S G, Zhang X 2017 Phys. Rev. B 95 115407Google Scholar

    [36]

    Song H F, Kang F Y 2022 Acta Phys. Chim. Sin 38 2101013

    [37]

    Zhao Y, Cai Y, Zhang L, Li B, Zhang G, Thong J T 2020 Adv. Funct. Mater. 30 1903929Google Scholar

    [38]

    Gu X, Wei Y, Yin X, Li B, Yang R 2018 Rev. Mod. Phys. 90 041002Google Scholar

    [39]

    Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, Kim P, Majumdar A 2003 J. Heat Transfer 125 881Google Scholar

    [40]

    Kim S, Shin S, Kim T, Du H, Song M, Lee C, Kim K, Cho S, Seo D H, Seo S 2016 Carbon 98 352Google Scholar

    [41]

    Pettes M T, Jo I, Yao Z, Shi L 2011 Nano Lett. 11 1195Google Scholar

    [42]

    Pizzocchero F, Gammelgaard L, Jessen B S, Caridad J M, Wang L, Hone J, Bøggild P, Booth T J 2016 Nat. Commun. 7 11894Google Scholar

    [43]

    Zhao S, Wang H 2020 ES Energy Environ. 9 59

    [44]

    Wang H, Kurata K, Fukunaga T, Ago H, Takamatsu H, Zhang X, Ikuta T, Takahashi K, Nishiyama T, Takata Y 2016 Sens. Actuators, A 247 24Google Scholar

    [45]

    Suh J, Yu K M, Fu D, Liu X, Yang F, Fan J, Smith D J, Zhang Y H, Furdyna J K, Dames C 2015 Adv. Mater. 27 3681Google Scholar

    [46]

    Goldsmid H, Sharp J 1999 J. Electron. Mater. 28 869Google Scholar

    [47]

    Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [48]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [49]

    Grigorenko A N, Polini M, Novoselov K 2012 Nat. Photonics 6 749Google Scholar

    [50]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I, Dubonos S, Firsov a 2005 Nature 438 197Google Scholar

    [51]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [52]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [53]

    Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [54]

    Cai W, Moore A L, Zhu Y, Li X, Chen S, Shi L, Ruoff R S 2010 Nano Lett. 10 1645Google Scholar

    [55]

    Novoselov K S, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A K 2005 PNAS 102 10451Google Scholar

    [56]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [57]

    Ghosh D, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N 2008 Appl. Phys. Lett. 92 151911Google Scholar

    [58]

    Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T 2014 Nat. Commun. 5 3689Google Scholar

    [59]

    Lindsay L, Broido D, Mingo N 2011 Phys. Rev. B 83 235428Google Scholar

    [60]

    Wei P, Bao W, Pu Y, Lau C N, Shi J 2009 Phys. Rev. Lett. 102 166808Google Scholar

    [61]

    Checkelsky J G, Ong N 2009 Phys. Rev. B 80 081413Google Scholar

    [62]

    Hwang E, Rossi E, Sarma S D 2009 Phys. Rev. B 80 235415Google Scholar

    [63]

    Wang C R, Lu W S, Hao L, Lee W L, Lee T K, Lin F, Cheng I C, Chen J Z 2011 Phys. Rev. Lett. 107 186602Google Scholar

    [64]

    Nam S G, Ki D K, Lee H J 2010 Phys. Rev. B 82 245416Google Scholar

    [65]

    Wang D, Shi J 2011 Phys. Rev. B 83 113403Google Scholar

    [66]

    Seol J H, Moore A L, Shi L, Jo I, Yao Z 2011 J. Heat Transfer 133 022403Google Scholar

    [67]

    Jang W, Chen Z, Bao W, Lau C N, Dames C 2010 Nano Lett. 10 3909Google Scholar

    [68]

    Yang J, Ziade E, Maragliano C, Crowder R, Wang X, Stefancich M, Chiesa M, Swan A K, Schmidt A J 2014 J. Appl. Phys. 116 023515Google Scholar

    [69]

    Ghosh S, Bao W, Nika D L, Subrina S, Pokatilov E P, Lau C N, Balandin A A 2010 Nat. Mater. 9 555Google Scholar

    [70]

    Wang J, Zhu L, Chen J, Li B, Thong J T 2013 Adv. Mater. 25 6884Google Scholar

    [71]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L 2010 Nat. Nanotechnol. 5 722Google Scholar

    [72]

    Nomura K, MacDonald A H 2007 Phys. Rev. Lett. 98 076602Google Scholar

    [73]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206Google Scholar

    [74]

    Hwang E, Adam S, Sarma S D 2007 Phys. Rev. Lett. 98 186806Google Scholar

    [75]

    Ando T 2006 J. Phys. Soc. Jpn. 75 074716Google Scholar

    [76]

    Morozov S, Novoselov K, Katsnelson M, Schedin F, Elias D C, Jaszczak J A, Geim A 2008 Phys. Rev. Lett. 100 016602Google Scholar

    [77]

    Katsnelson M, Geim A 2008 Philos. Trans. R. Soc. London, Ser. A 366 195

    [78]

    Ishigami M, Chen J, Cullen W, Fuhrer M, Williams E 2007 Nano Lett. 7 1643Google Scholar

    [79]

    Fratini S, Guinea F 2008 Phys. Rev. B 77 195415Google Scholar

    [80]

    Duan J, Wang X, Lai X, Li G, Watanabe K, Taniguchi T, Zebarjadi M, Andrei E Y 2016 PNAS 113 14272Google Scholar

    [81]

    Zebarjadi M 2015 Appl. Phys. Lett. 106 203506Google Scholar

    [82]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D 2010 Science 328 213Google Scholar

    [83]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [84]

    Liu X, Zhang G, Pei Q X, Zhang Y W 2013 Appl. Phys. Lett. 103 133113Google Scholar

    [85]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar

    [86]

    Wilson J A, Yoffe A 1969 Adv. Phys. 18 193Google Scholar

    [87]

    Seh Z W, Yu J H, Li W, Hsu P-C, Wang H, Sun Y, Yao H, Zhang Q, Cui Y 2014 Nat. Commun. 5 5017Google Scholar

    [88]

    Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H 2012 ACS Nano 6 74Google Scholar

    [89]

    Wang X, Wang P, Wang J, Hu W, Zhou X, Guo N, Huang H, Sun S, Shen H, Lin T 2015 Adv. Mater. 27 6575Google Scholar

    [90]

    Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong Z J, Ye Z, Ye Y, Yin X, Zhang X 2015 Nat. Nanotechnol. 10 151Google Scholar

    [91]

    Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T F 2014 Nature 514 470Google Scholar

    [92]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B 2012 Nat. Commun. 3 887Google Scholar

    [93]

    Yu H, Yao W 2017 Nat. Mater. 16 876Google Scholar

    [94]

    Wei X, Wang Y, Shen Y, Xie G, Xiao H, Zhong J, Zhang G 2014 Appl. Phys. Lett. 105 103902Google Scholar

    [95]

    Ding Z, Jiang J W, Pei Q X, Zhang Y W 2015 Nanotechnology 26 065703Google Scholar

    [96]

    Zhao Y, Zheng M, Wu J, Huang B, Thong J T 2020 Nanotechnology 31 225702Google Scholar

    [97]

    Peng B, Ning Z, Zhang H, Shao H, Xu Y, Ni G, Zhu H 2016 J. Phys. Chem. C 120 29324Google Scholar

    [98]

    Ding Z, Pei Q X, Jiang J W, Zhang Y W 2015 J. Phys. Chem. C 119 16358Google Scholar

    [99]

    Gu X, Li B, Yang R 2016 J. Appl. Phys. 119 085106Google Scholar

    [100]

    Xu K, Gabourie A J, Hashemi A, Fan Z, Wei N, Farimani A B, Komsa H-P, Krasheninnikov A V, Pop E, Ala-Nissila T 2019 Phys. Rev. B 99 054303Google Scholar

    [101]

    Zhou W, Gong H M, Jin X H, Chen Y, Li H M, Liu S 2022 Front. Phys. 10 842789Google Scholar

    [102]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768Google Scholar

    [103]

    Baugher B W, Churchill H O, Yang Y, Jarillo-Herrero P 2013 Nano Lett. 13 4212Google Scholar

    [104]

    Cai X, Wu Z, Han X, Chen Y, Xu S, Lin J, Han T, He P, Feng X, An L 2022 Nat. Commun. 13 1777Google Scholar

    [105]

    Ng H, Chi D, Hippalgaonkar K 2017 J. Appl. Phys. 121 204303Google Scholar

    [106]

    Yoshida M, Iizuka T, Saito Y, Onga M, Suzuki R, Zhang Y, Iwasa Y, Shimizu S 2016 Nano Lett. 16 2061Google Scholar

    [107]

    Zhao Y, Yu P, Zhang G, Sun M, Chi D, Hippalgaonkar K, Thong J T, Wu J 2020 Adv. Funct. Mater. 30 2004896Google Scholar

    [108]

    Zeng J, He X, Liang S J, Liu E, Sun Y, Pan C, Wang Y, Cao T, Liu X, Wang C 2018 Nano Lett. 18 7538Google Scholar

    [109]

    Lindroth D O, Erhart P 2016 Phys. Rev. B 94 115205Google Scholar

    [110]

    Jiang P, Qian X, Gu X, Yang R 2017 Adv. Mater. 29 1701068Google Scholar

    [111]

    Wickramaratne D, Zahid F, Lake R K 2014 J. Phys. Chem. 140 124710Google Scholar

    [112]

    Imai H, Shimakawa Y, Kubo Y 2001 Phys. Rev. B 64 241104Google Scholar

    [113]

    Qin D, Yan P, Ding G, Ge X, Song H, Gao G 2018 Sci. Rep. 8 2764Google Scholar

    [114]

    Oyedele A D, Yang S, Liang L, Puretzky A A, Wang K, Zhang J, Yu P, Pudasaini P R, Ghosh A W, Liu Z 2017 J. Am. Chem. Soc. 139 14090Google Scholar

    [115]

    Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting I T, Faghaninia A, Chen Y, Jain A 2018 Joule 2 976Google Scholar

    [116]

    Tangpakonsab P, Moontragoon P, Hussain T, Kaewmaraya T 2022 ACS Appl. Energy Mater. 5 13081Google Scholar

    [117]

    Hung N T, Nugraha A R T, Saito R 2017 Appl. Phys. Lett. 111 092107Google Scholar

    [118]

    Hung N T, Nugraha A R T, Yang T, Zhang Z D, Saito R 2019 J. Appl. Phys. 125 082502Google Scholar

    [119]

    Wang Q, Han L, Wu L, Zhang T, Li S, Lu P 2019 Nanoscale Res. Lett. 14 287Google Scholar

    [120]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [121]

    St Laurent B, Dey D, Yu L, Hollen S 2021 ACS Appl. Electron. Mater. 3 4066Google Scholar

    [122]

    Hu Z, Li Q, Lei B, Zhou Q, Xiang D, Lyu Z, Hu F, Wang J, Ren Y, Guo R 2017 Angew. Chem. Int. Ed. 56 9131Google Scholar

    [123]

    Abate Y, Akinwande D, Gamage S, Wang H, Snure M, Poudel N, Cronin S B 2018 Adv. Mater. 30 1704749Google Scholar

    [124]

    Zhang J L, Han C, Hu Z, Wang L, Liu L, Wee A T, Chen W 2018 Adv. Mater. 30 1802207Google Scholar

    [125]

    Lee S, Yang F, Suh J, Yang S, Lee Y, Li G, Choe H S, Suslu A, Chen Y, Ko C 2015 Nat. Commun. 6 8573Google Scholar

    [126]

    Zhao Y, Zhang G, Nai M H, Ding G, Li D, Liu Y, Hippalgaonkar K, Lim C T, Chi D, Li B 2018 Adv. Mater. 30 1804928Google Scholar

    [127]

    Liu H, Choe H S, Chen Y, Suh J, Ko C, Tongay S, Wu J 2017 Appl. Phys. Lett. 111 102101Google Scholar

    [128]

    Luo Z, Maassen J, Deng Y, Du Y, Garrelts R P, Lundstrom M S, Ye P D, Xu X 2015 Nat. Commun. 6 8572Google Scholar

    [129]

    Qin G, Yan Q B, Qin Z, Yue S Y, Hu M, Su G 2015 Phys. Chem. Chem. Phys. 17 4854Google Scholar

    [130]

    Zhao Y, Yang L, Kong L, Nai M H, Liu D, Wu J, Liu Y, Chiam S Y, Chim W K, Lim C T 2017 Adv. Funct. Mater. 27 1702824Google Scholar

    [131]

    Flores E, Ares J R, Castellanos-Gomez A, Barawi M, Ferrer I J, Sánchez C 2015 Appl. Phys. Lett. 106 022102Google Scholar

    [132]

    Zhang J, Liu H, Cheng L, Wei J, Liang J, Fan D, Jiang P, Sun L, Shi J 2016 J. Mater. Chem. C 4 991Google Scholar

    [133]

    Lü H, Lu W, Shao D, Lu H, Sun Y 2016 J. Mater. Chem. C 4 4538Google Scholar

    [134]

    Carrete J, Mingo N, Curtarolo S 2014 Appl. Phys. Lett. 105 101907Google Scholar

    [135]

    Zhang L C, Qin G, Fang W Z, Cui H J, Zheng Q R, Yan Q B, Su G 2016 Sci. Rep. 6 35705Google Scholar

    [136]

    Ding G, Hu Y, Li D, Wang X 2019 Results Phys. 15 102631Google Scholar

    [137]

    Guo R, Wang X, Kuang Y, Huang B 2015 Phys. Rev. B 92 115202Google Scholar

    [138]

    Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar

    [139]

    Zhou C, Lee Y K, Yu Y, Byun S, Luo Z Z, Lee H, Ge B, Lee Y L, Chen X, Lee J Y 2021 Nat. Mater. 20 1378Google Scholar

    [140]

    Sun Y, Shuai Z, Wang D 2019 J. Phys. Chem. C 123 12001Google Scholar

    [141]

    Zhao T, Sun Y, Shuai Z, Wang D 2017 Chem. Mater. 29 6261Google Scholar

    [142]

    Wu M, Zeng X C 2017 Nano Lett. 17 6309Google Scholar

    [143]

    Wu J, Liu Y, Tan Z, Tan C, Yin J, Li T, Tu T, Peng H 2017 Adv. Mater. 29 1704060Google Scholar

    [144]

    Fu Q, Zhu C, Zhao X, Wang X, Chaturvedi A, Zhu C, Wang X, Zeng Q, Zhou J, Liu F 2019 Adv. Mater. 31 1804945Google Scholar

    [145]

    Wu J, Yuan H, Meng M, Chen C, Sun Y, Chen Z, Dang W, Tan C, Liu Y, Yin J 2017 Nat. Nanotechnol. 12 530Google Scholar

    [146]

    Yang F, Wang R, Zhao W, Jiang J, Wei X, Zheng T, Yang Y, Wang X, Lu J, Ni Z 2019 Appl. Phys. Lett. 115 193103Google Scholar

    [147]

    Leburton J P 1984 J. Appl. Phys. 56 2850Google Scholar

    [148]

    Gelmont B, Shur M, Stroscio M 1995 J. Appl. Phys. 77 657Google Scholar

    [149]

    Paul S, Bhattacharya D 1989 Phys. Rev. B 39 13521Google Scholar

    [150]

    Alkan B, Unal B, Ozdemir A 1995 Semicond. Sci. Technol. 10 1458Google Scholar

    [151]

    Zook J D 1964 Phys. Rev. 136 A869Google Scholar

    [152]

    Wang F Q, Guo Y, Wang Q, Kawazoe Y, Jena P 2017 Chem. Mater. 29 9300Google Scholar

    [153]

    Rau J W, Kannewurf C 1971 Phys. Rev. B 3 2581Google Scholar

    [154]

    Li L, Gong P, Sheng D, Wang S, Wang W, Zhu X, Shi X, Wang F, Han W, Yang S 2018 Adv. Mater. 30 1804541Google Scholar

    [155]

    Panasci S, Schilirò E, Migliore F, Cannas M, Gelardi F, Roccaforte F, Giannazzo F, Agnello S 2021 Appl. Phys. Lett. 119 093103Google Scholar

    [156]

    Velicky M, Donnelly G E, Hendren W R, McFarland S, Scullion D, DeBenedetti W J, Correa G C, Han Y, Wain A J, Hines M A 2018 ACS Nano 12 10463Google Scholar

    [157]

    Liu F 2021 Prog. Surf. Sci. 96 100626Google Scholar

    [158]

    Zou B, Zhou Y, Zhou Y, Wu Y, He Y, Wang X, Yang J, Zhang L, Chen Y, Zhou S, Guo H, Sun H 2022 Nano Res. 15 8470Google Scholar

    [159]

    Wu J, Liu Y, Liu Y, Cai Y, Zhao Y, Ng H K, Watanabe K, Taniguchi T, Zhang G, Qiu C W 2020 PNAS 117 13929Google Scholar

    [160]

    Sharma M, Kumar A, Ahluwalia P 2019 Physica E 107 117Google Scholar

    [161]

    Zheng Y, Slade T J, Hu L, Tan X Y, Luo Y, Luo Z Z, Xu J, Yan Q, Kanatzidis M G 2021 Chem. Soc. Rev. 50 9022Google Scholar

    [162]

    Yan Z, Yoon M, Kumar S 2018 2 D Mater. 5 031008

    [163]

    Zhao Y, Zheng M, Wu J, Guan X, Suwardi A, Li Y, Lal M, Xie G, Zhang G, Zhang L 2021 Nanoscale 13 11561Google Scholar

    [164]

    Aiyiti A, Hu S, Wang C, Xi Q, Cheng Z, Xia M, Ma Y, Wu J, Guo J, Wang Q 2018 Nanoscale 10 2727Google Scholar

    [165]

    Chen J H, Li L, Cullen W G, Williams E D, Fuhrer M S 2011 Nat. Phys. 7 535Google Scholar

    [166]

    Takahashi H, Okazaki R, Ishiwata S, Taniguchi H, Okutani A, Hagiwara M, Terasaki I 2016 Nat. Commun. 7 12732Google Scholar

    [167]

    Zhou J, Liao B, Qiu B, Huberman S, Esfarjani K, Dresselhaus M S, Chen G 2015 PNAS 112 14777Google Scholar

    [168]

    Pan Y, Chen S, Wang P, Li Y, Zheng Q 2019 Ceram. Int. 45 19534Google Scholar

    [169]

    Lee W, Lim G, Ko S H 2021 Nano Energy 87 106188Google Scholar

    [170]

    Wu X, Yang N, Luo T 2015 Appl. Phys. Lett. 107 191907Google Scholar

    [171]

    Rosi F 1968 Solid-State Electron. 11 833Google Scholar

    [172]

    Guo Y, Dun C, Xu J, Li P, Huang W, Mu J, Hou C, Hewitt C A, Zhang Q, Li Y 2018 ACS Appl. Mater. Interfaces 10 33316Google Scholar

    [173]

    Ng H K, Abutaha A, Voiry D, Verzhbitskiy I, Cai Y, Zhang G, Liu Y, Wu J, Chhowalla M, Eda G 2019 ACS Appl. Mater. Interfaces 11 12184Google Scholar

    [174]

    An C J, Kang Y H, Lee C, Cho S Y 2018 Adv. Funct. Mater. 28 1800532Google Scholar

    [175]

    Xiang D, Han C, Wu J, Zhong S, Liu Y, Lin J, Zhang X A, Ping Hu W, Özyilmaz B, Neto A 2015 Nat. Commun. 6 8949Google Scholar

    [176]

    Kong S, Wu T, Yuan M, Huang Z, Meng Q L, Jiang Q, Zhuang W, Jiang P, Bao X 2017 J. Mater. Chem. A 5 2004Google Scholar

    [177]

    Perera M M, Lin M W, Chuang H J, Chamlagain B P, Wang C T, Tan X B, Cheng M M C, Tománek D, Zhou Z X 2013 ACS Nano 7 4449Google Scholar

    [178]

    Böttner H, Chen G, Venkatasubramanian R 2006 MRS Bull. 31 211Google Scholar

    [179]

    Venkatasubramanian R, Siivola E, Colpitts T, O'quinn B 2001 Nature 413 597Google Scholar

    [180]

    Harman T, Taylor P, Walsh M, LaForge B 2002 Science 297 2229Google Scholar

    [181]

    Harman T, Taylor P, Spears D, Walsh M 2000 J. Electron. Mater. 29 L1Google Scholar

    [182]

    Hicks L, Harman T, Sun X, Dresselhaus M 1996 Phys. Rev. B 53 R10493Google Scholar

    [183]

    Ding G, He J, Gao G, Yao K 2018 J. Appl. Phys. 124 165101Google Scholar

    [184]

    Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder G J 2015 Nat. Mater. 14 622Google Scholar

    [185]

    Wang S, Yang X, Hou L, Cui X, Zheng X, Zheng J 2022 Nat. Commun. 13 4401Google Scholar

    [186]

    Luckyanova M N, Garg J, Esfarjani K, Jandl A, Bulsara M T, Schmidt A J, Minnich A J, Chen S, Dresselhaus M S, Ren Z 2012 Science 338 936Google Scholar

    [187]

    Zhang G, Zhang Y W 2015 Mech. Mater. 91 382Google Scholar

    [188]

    Peng Z, Chen X, Fan Y, Srolovitz D J, Lei D 2020 Light Sci. Appl. 9 190Google Scholar

    [189]

    Yang S, Chen Y, Jiang C 2021 InfoMat 3 397Google Scholar

    [190]

    Yan Y, Ding S, Wu X, Zhu J, Feng D, Yang X, Li F 2020 RSC Adv. 10 39455Google Scholar

    [191]

    Manzeli S, Allain A, Ghadimi A, Kis A 2015 Nano Lett. 15 5330Google Scholar

    [192]

    Meng L, Zhang Y, Hu S, Wang X, Liu C, Guo Y, Wang X, Yan X 2016 Appl. Phys. Lett. 108 263104Google Scholar

    [193]

    Castellanos-Gomez A, Roldán R, Cappelluti E, Buscema M, Guinea F, van der Zant H S, Steele G A 2013 Nano Lett. 13 5361Google Scholar

    [194]

    Zhu C, Wang G, Liu B, Marie X, Qiao X, Zhang X, Wu X, Fan H, Tan P, Amand T 2013 Phys. Rev. B 88 121301Google Scholar

    [195]

    Ng H K, Xiang D, Suwardi A, Hu G, Yang K, Zhao Y, Liu T, Cao Z, Liu H, Li S 2022 Nat. Electron. 5 489Google Scholar

    [196]

    Jiang J W, Park H S, Rabczuk T 2013 J. Appl. Phys. 114 064307Google Scholar

    [197]

    Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [198]

    Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J, Javey A 2014 Nano Lett. 14 4592Google Scholar

    [199]

    Hoat D, Naseri M, Binh N T, Vu T V, Rivas-Silva J, Obeid M M, Cocoletzi G H 2021 Phys. B:Condens. Matter 603 412757Google Scholar

    [200]

    Qin G, Yan Q B, Qin Z, Yue S Y, Cui H J, Zheng Q R, Su G 2014 Sci. Rep. 4 6946Google Scholar

    [201]

    Bera J, Sahu S 2019 RSC Adv. 9 25216Google Scholar

    [202]

    Qin D, Ge X J, Ding G Q, Gao G Y, Lü J T 2017 RSC Adv. 7 47243Google Scholar

  • 图 1  (a) 塞贝克系数、电导率、功率因数随载流子浓度的相互依赖关系和电子热导率与晶格热导率随载流子浓度的依赖关系[10]; (b) 不同维度材料的电子态密度随能量的变化关系[13]

    Fig. 1.  (a) The interdependence of Seebeck coefficient, conductivity, power factor for different carrier concentration and electron thermal conductivity and lattice thermal conductivity as a function of carrier concentration[10]; (b) electronic DOS of different dimensional materials as a function of energy[13].

    图 2  (a) 基于场效应晶体管对二维半导体热电性质测量器件示意图[24]; (b) 利用电子双层结构离子液体晶体管对二维材料的热电性质测量器件示意图[25]; (c) 悬空热桥法器件示意图[26]; (d) 利用H型方法测量样品的塞贝克系数示意图[27]

    Fig. 2.  (a) Schematic image of device for measuring thermoelectric property based on field effect transistor (FET)[24]; (b) schematic image of device for thermoelectric property measurement based on electronic double-layer structure ionic liquid transistor[25]; (c) schematic image of suspended thermal bridge device[26]; (d) schematic image of H-type method device[27].

    图 3  (a) 石墨烯中不同声子模式对热导率的贡献[59]; (b) 石墨烯热导率与样品长度关系的不同结果汇总[38]; (c) 石墨烯的电导率和塞贝克系数随栅极电压的变化关系(上方插图为石墨烯器件的扫描电子显微镜图像, 下方插图为${V_{\rm{g}}}$ = –5, –30 V时塞贝克系数随温度的变化)[15]; (d) 在290 K下, G/hBN和G/SiO2的PFT随栅极电压的变化关系[10]

    Fig. 3.  (a) Contribution of different phonon modes to thermal conductivity in graphene[59]; (b) summary of thermal conductivity of graphene as a function of sample length[38]; (c) conductivity and Seebeck coefficient of graphene as a function of gate voltage (Upper inset: SEM image of a graphene device, the scale bar is 2 μm. Lower inset: Seebeck coefficient of graphene as a function of temperature at ${V_{\rm{g}}}$ = –5, –30 V) [15]; (d) PFT as a function of gate voltage in both devices at 290 K[10].

    图 4  (a) 单层二硫化钼的示意图(其中紫色为Mo原子、黄色为S原子)[84]; (b) 室温下关于MoS2的热导率研究结果的汇总[38]; (c) 不同${V_{\rm{g}}} - {V_{\rm th}}$下, 四端法测得的MoS2的电导率和塞贝克系数随样品厚度(层数)的变化关系[28]; (d) 不同${V_{\rm{g}}} - {V_{\rm th}}$下, MoS2的功率因数随样品厚度(层数)的变化关系[28]; (e) 不同厚度(1—3层)的MoS2的功率因数随${V_g}$的变化关系[35]

    Fig. 4.  (a) Schematic image of monolayer MoS2 (Where purple is Mo atom and yellow is S atom) [84]; (b) summary of thermal conductivity of MoS2 at room temperature[38]; (c) four-probe conductivity and Seebeck coefficient of MoS2 as a function of the thickness (number of layers) measured at different ${V_{\rm{g}}} - {V_{\rm th}}$ values; (d) PF of MoS2 as a function of the thickness (number of layers) measured at different ${V_{\rm{g}}} - {V_{\rm th}}$ values[28]; (e) PF of MoS2 with different thick (monolayer-three layers) as a function of the ${V_{\rm{g}}}$[35].

    图 5  (a) 300 K下, 极薄单晶WSe2的电导率(两端法)、塞贝克系数和功率因数随${V_{\rm{g}}}$的变化关系[106]; (b) 厚度为5和9 nm的PdSe2薄片的功率因数[107]; (c) 室温下不同厚度的InSe薄膜的功率因数随载流子浓度的变化关系[108]

    Fig. 5.  (a) ${\sigma _{{\text{2D}}}}$, $S$ and ${S^2}\sigma $ of ultrathin WSe2 single crystals as a function of the ${V_{\text{g}}}$ at T = 300 K[106]; (b) power factor of PdSe2 flakes with thickness of 5 and 9 nm[107]; (c) power factor of InSe film with different thickness as a function of carrier concentration at room temperature[108].

    图 6  (a) 黑磷晶体结构的示意图[125]; (b) 黑磷纳米带在ACZZ方向的热导率和杨氏模量测量值, 其中热导率和杨氏模量有着相似的各向异性比值(分别为2.24和2.05)[126]; (c) AC方向和ZZ方向的黑磷纳米带电导率(c)和塞贝克系数(d)随温度的变化关系[127]; (e) 黑磷塞贝克系数的少层实验数据和体块理论计算数值(实线为${S_x}$, 虚线为${S_y}$)的比较[25]; (f) 210 K下, 少层黑磷的功率因数随栅极电压的变化关系[25]

    Fig. 6.  (a) Schematic image of BP reproduced with permission[125]; (b) thermal conductivity and Young’s modulus values of the BP nanoribbons. The thermal conductivity anisotropy ratio (≈2.24) between ZZ and AC is similar to that of Young’s modulus (≈2.05)[126]; temperature dependence of electrical conductivity (c) and Seebeck coefficient (d) of BP nanoribbons along the AC and ZZ directions[127]; (e) comparison between experimental data and bulk values of theoretical calculation (${S_x}$, solid line; ${S_y}$ dashed line) of Seebeck coefficient of BP[25]; (f) power factor of few layer BP as a function of gate voltage at 210 K[25].

    图 7  (a) 少层Bi2O2Se晶体的功率因数随着栅极电压和温度的变化关系[24]; (b) 单层GeAs2(n型或p型)在不同温度下的热电优值的最大值[141]

    Fig. 7.  (a) PF of few-layer Bi2O2Se as a function of gate voltage and temperature[24]; (b) maximum ZT of monolayer GeAs2 at different temperature (including n type and p type)[141].

    图 8  (a) MoS2/hBN器件的四端法电导率随温度和栅极电压的变化关系(低温下电导率出现异常的峰值用红色虚线标出)[159]; (b) MoS2/SiO2和MoS2/hBN器件的塞贝克系数与温度的变化关系(其中MoS2/hBN器件${V_{\rm{g}}}$ = 70 V以圆形表示, ${V_g}$ = 50 V以方形表示, ${V_{\rm{g}}}$= 30 V以钻石形状表示)[159]; (c) 氦离子辐射同时增加Bi2Te3塞贝克系数和载流子浓度(虚线为不同散射弛豫时间指数下塞贝克系数的计算结果)[45]; (d) 不同厚度的Bi2Te3的功率因数随辐射剂量的变化关系[45]

    Fig. 8.  (a) Four-probe electrical conductivity of MoS2/hBN devices as a function of Temperature and back gate voltage[159]; (b) temperature dependent Seebeck coefficient of MoS2/SiO2 and MoS2/hBN device at ${V_{\rm{g}}}$ = 70 V (circle), 50 V (square), and 30 V (diamond) [159]; (c) the simultaneous increase of Seebeck coefficient and carrier concentration of helium ion irradiated Bi2Te3[45]; (d) irradiation dose dependent power factor of Bi2Te3 with different thicknesses[45].

    图 9  (a) 在SiO2/Si基底上, 真空退火3次LixMoS2的拉曼光谱图[173]; (b) 经过每次退火后的LixMoS2的塞贝克系数、电导率和功率因数[173]; (c) 沿各个方向的本征MoS2和氧原子掺杂MoS2的PF随温度的变化[176]; (d) 沿各个方向的本征MoS2和氧原子掺杂MoS2的热导率随温度的变化[176]

    Fig. 9.  (a) Raman spectra of a LixMoS2 flake on SiO2/Si substrate across three separate annealing cycles performed in vacuum[173]; (b) Seebeck coefficient, electrical conductivity, and power factor of LixMoS2 device across all annealing cycles[173]; (c) power factor of the pristine MoS2 and oxygen-doped MoS2 along both directions[176]; (d) thermal conductivity of the pristine MoS2 and oxygen-doped MoS2 along both directions[176].

    图 10  (a) Bi2Te3/Sb2Te3超晶格、PbSnSeTe/PbTe量子点超晶格、PbTe0.02Se0.98/PbTe量子点超晶格的热电优值[178]; (b) 计算获得的不同周期厚度的横向超晶格晶格热导率随温度的关系[183]; (c) TiS2[(HA)x(H2O)y(DMSO)z]超晶格材料的HAADF-STEM 图像(展示了褶皱的晶格结构)[10]; (d) 放大的TiS2[(HA)x(H2O)y(DMSO)z]超晶格材料的HAADF-STEM 图像[10]; (e) 本征TaS2和SCCM-TaS2的电导率[185]; (f) 本征TaS2和SCCM-TaS2的塞贝克系数[185]

    Fig. 10.  (a) Thermoelectric figure of merit for Bi2Te3/Sb2Te3 superlattices, PbSnSeTe/PbTe quantum dot superlattices, and PbTe0.02Se0.98/PbTe quantum dot superlattices[178]; (b) temperature dependence of calculated lattice thermal conductivity of lateral superlattices with different periodic thicknesses[183]; (c) HAADF-STEM (high-angle annular dark field scanning transmission electron microscope) image of the TiS2[(HA)x(H2O)y(DMSO)z] hybrid superlattice showing a wavy structure[10]. (d) magnified HAADF-STEM image of TiS2[(HA)x(H2O)y(DMSO)z][10]; (e) electrical conductivity of the pristine TaS2 crystals and SCCM-TaS2 hybrid structure[185]; (f) seebeck coefficient of the pristine TaS2 crystals and SCCM-TaS2 hybrid structure[185].

    图 11  (a) 利用AFM对悬空单层MoS2施加应力的示意图[85]; (b) 褶皱的单层MoS2的构造过程示意图[193]; (c) 利用三点弯曲法对MoS2进行延伸示意图[194]; (d) 黑磷的热电优值随温度和应变的变化关系[199]; (e) 在300, 600和900 K下施加双向压缩和拉伸应变的n型或p型WS2${{{S^2}\sigma } \mathord{\left/ {\vphantom {{{S^2}\sigma } \tau }} \right. } \tau }$[201]; (f) 不同厚度(层数)的平坦和褶皱的MoS2的功率因数随载流子浓度的变化关系[195]

    Fig. 11.  (a) Schematic image of inducing strain to the suspended monolayer MoS2 by AFM[85]; (b) schematic image of the fabrication process of wrinkled MoS2 nanolayers[193]; (c) schematic image of the extension of MoS2 by the three-point bending apparatus[194]; (d) ZT of BP as a function of temperature and strain[199]; (e)${{{S^2}\sigma } \mathord{\left/ {\vphantom {{{S^2}\sigma } \tau }} \right. } \tau }$ of WS2 with applied both biaxial compressive and tensile strain for n-type and p-type doping at 300, 600 and 900 K[201]; (f) PF of flat and ripped MoS2 as a function of carrier concentration with different thickness[195].

    Baidu
  • [1]

    Dresselhaus M S, Chen G, Tang M Y, Yang R, Lee H, Wang D, Ren Z, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043Google Scholar

    [2]

    Kim R, Datta S, Lundstrom M S 2009 J. Appl. Phys. 105 034506Google Scholar

    [3]

    Maassen J, Lundstrom M 2013 Appl. Phys. Lett. 102 093103Google Scholar

    [4]

    Pichanusakorn P, Bandaru P 2010 Mater. Sci. Eng. , R 67 19Google Scholar

    [5]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 16631Google Scholar

    [6]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727Google Scholar

    [7]

    Song H, Liu J, Liu B, Wu J, Cheng H M, Kang F 2018 Joule 2 442Google Scholar

    [8]

    Ioffe A F, Stil'Bans L, Iordanishvili E, Stavitskaya T, Gelbtuch A, Vineyard G 1959 Phys. Today 12 42

    [9]

    Wood C 1988 Rep. Prog. Phys. 51 459Google Scholar

    [10]

    Wu J, Chen Y, Wu J, Hippalgaonkar K 2018 Adv. Electron. Mater. 4 1800248Google Scholar

    [11]

    Graf M J, Yip S K, Sauls J A, Rainer D 1996 Phys. Rev. B 53 15147Google Scholar

    [12]

    Jonson M, Mahan G D 1980 Phys. Rev. B 21 4223Google Scholar

    [13]

    Mao J, Liu Z, Ren Z 2016 NPJ Quantum Mater. 1 16028Google Scholar

    [14]

    Cutler M, Mott N F 1969 Phys. Rev. 181 1336Google Scholar

    [15]

    Zuev Y M, Chang W, Kim P 2009 Phys. Rev. Lett. 102 096807Google Scholar

    [16]

    Sun P, Wei B, Zhang J, Tomczak J M, Strydom A, Søndergaard M, Iversen B B, Steglich F 2015 Nat. Commun. 6 7475Google Scholar

    [17]

    Mahan G, Sofo J 1996 PNAS 93 7436Google Scholar

    [18]

    Sootsman J R, Chung D Y, Kanatzidis M G 2009 Angew. Chem. Int. Ed. 48 8616Google Scholar

    [19]

    Ishida A, Cao D, Morioka S, Veis M, Inoue Y, Kita T 2008 Appl. Phys. Lett. 92 182105Google Scholar

    [20]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554Google Scholar

    [21]

    Lee G H, Cooper R C, An S J, Lee S, Van Der Zande A, Petrone N, Hammerberg A G, Lee C, Crawford B, Oliver W 2013 Science 340 1073Google Scholar

    [22]

    吴祥冰, 汤雯婷, 徐象繁 2020 69 196602Google Scholar

    Wu X, Tang W, Xu X 2020 Acta Phys. Sin. 69 196602Google Scholar

    [23]

    Choi S J, Kim B K, Lee T H, Kim Y H, Li Z, Pop E, Kim J J, Song J H, Bae M H 2016 Nano Lett. 16 3969Google Scholar

    [24]

    Yang F, Wu J, Suwardi A, Zhao Y, Liang B, Jiang J, Xu J, Chi D, Hippalgaonkar K, Lu J 2021 Adv. Mater. 33 2004786Google Scholar

    [25]

    Saito Y, Iizuka T, Koretsune T, Arita R, Shimizu S, Iwasa Y 2016 Nano Lett. 16 4819Google Scholar

    [26]

    Aiyiti A, Bai X, Wu J, Xu X, Li B 2018 Sci. Bull. 63 452Google Scholar

    [27]

    Wang H, Zheng D, Zhang X, Takamatsu H, Hu W 2017 RSC Adv. 7 25298Google Scholar

    [28]

    Kayyalha M, Maassen J, Lundstrom M, Shi L, Chen Y P 2016 J. Appl. Phys. 120 134305Google Scholar

    [29]

    Klarskov M B, Dam H F, Petersen D H, Hansen T M, Löwenborg A, Booth T, Schmidt M S, Lin R, Nielsen P, Bøggild P 2011 Nanotechnology 22 445702Google Scholar

    [30]

    Yoshimoto S, Murata Y, Kubo K, Tomita K, Motoyoshi K, Kimura T, Okino H, Hobara R, Matsuda I, Honda S, Katayama M, Hasegawa S 2007 Nano Lett. 7 956Google Scholar

    [31]

    Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H 2012 Nano Lett. 12 1538Google Scholar

    [32]

    Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J 2012 Adv. Mater. 24 2320Google Scholar

    [33]

    Wang H, Yu L, Lee Y H, Fang W, Hsu A, Herring P, Chin M, Dubey M, Li L J, Kong J, Palacios T 2012 International Electron Devices Meeting (IEDM) San Francisco, CA, December 10-13, 2012, pp4.6.1–4.6. 4

    [34]

    Podzorov V, Gershenson M, Kloc C, Zeis R, Bucher E 2004 Appl. Phys. Lett. 84 3301Google Scholar

    [35]

    Hippalgaonkar K, Wang Y, Ye Y, Qiu D Y, Zhu H, Wang Y, Moore J, Louie S G, Zhang X 2017 Phys. Rev. B 95 115407Google Scholar

    [36]

    Song H F, Kang F Y 2022 Acta Phys. Chim. Sin 38 2101013

    [37]

    Zhao Y, Cai Y, Zhang L, Li B, Zhang G, Thong J T 2020 Adv. Funct. Mater. 30 1903929Google Scholar

    [38]

    Gu X, Wei Y, Yin X, Li B, Yang R 2018 Rev. Mod. Phys. 90 041002Google Scholar

    [39]

    Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, Kim P, Majumdar A 2003 J. Heat Transfer 125 881Google Scholar

    [40]

    Kim S, Shin S, Kim T, Du H, Song M, Lee C, Kim K, Cho S, Seo D H, Seo S 2016 Carbon 98 352Google Scholar

    [41]

    Pettes M T, Jo I, Yao Z, Shi L 2011 Nano Lett. 11 1195Google Scholar

    [42]

    Pizzocchero F, Gammelgaard L, Jessen B S, Caridad J M, Wang L, Hone J, Bøggild P, Booth T J 2016 Nat. Commun. 7 11894Google Scholar

    [43]

    Zhao S, Wang H 2020 ES Energy Environ. 9 59

    [44]

    Wang H, Kurata K, Fukunaga T, Ago H, Takamatsu H, Zhang X, Ikuta T, Takahashi K, Nishiyama T, Takata Y 2016 Sens. Actuators, A 247 24Google Scholar

    [45]

    Suh J, Yu K M, Fu D, Liu X, Yang F, Fan J, Smith D J, Zhang Y H, Furdyna J K, Dames C 2015 Adv. Mater. 27 3681Google Scholar

    [46]

    Goldsmid H, Sharp J 1999 J. Electron. Mater. 28 869Google Scholar

    [47]

    Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [48]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [49]

    Grigorenko A N, Polini M, Novoselov K 2012 Nat. Photonics 6 749Google Scholar

    [50]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I, Dubonos S, Firsov a 2005 Nature 438 197Google Scholar

    [51]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [52]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [53]

    Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [54]

    Cai W, Moore A L, Zhu Y, Li X, Chen S, Shi L, Ruoff R S 2010 Nano Lett. 10 1645Google Scholar

    [55]

    Novoselov K S, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A K 2005 PNAS 102 10451Google Scholar

    [56]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [57]

    Ghosh D, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N 2008 Appl. Phys. Lett. 92 151911Google Scholar

    [58]

    Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T 2014 Nat. Commun. 5 3689Google Scholar

    [59]

    Lindsay L, Broido D, Mingo N 2011 Phys. Rev. B 83 235428Google Scholar

    [60]

    Wei P, Bao W, Pu Y, Lau C N, Shi J 2009 Phys. Rev. Lett. 102 166808Google Scholar

    [61]

    Checkelsky J G, Ong N 2009 Phys. Rev. B 80 081413Google Scholar

    [62]

    Hwang E, Rossi E, Sarma S D 2009 Phys. Rev. B 80 235415Google Scholar

    [63]

    Wang C R, Lu W S, Hao L, Lee W L, Lee T K, Lin F, Cheng I C, Chen J Z 2011 Phys. Rev. Lett. 107 186602Google Scholar

    [64]

    Nam S G, Ki D K, Lee H J 2010 Phys. Rev. B 82 245416Google Scholar

    [65]

    Wang D, Shi J 2011 Phys. Rev. B 83 113403Google Scholar

    [66]

    Seol J H, Moore A L, Shi L, Jo I, Yao Z 2011 J. Heat Transfer 133 022403Google Scholar

    [67]

    Jang W, Chen Z, Bao W, Lau C N, Dames C 2010 Nano Lett. 10 3909Google Scholar

    [68]

    Yang J, Ziade E, Maragliano C, Crowder R, Wang X, Stefancich M, Chiesa M, Swan A K, Schmidt A J 2014 J. Appl. Phys. 116 023515Google Scholar

    [69]

    Ghosh S, Bao W, Nika D L, Subrina S, Pokatilov E P, Lau C N, Balandin A A 2010 Nat. Mater. 9 555Google Scholar

    [70]

    Wang J, Zhu L, Chen J, Li B, Thong J T 2013 Adv. Mater. 25 6884Google Scholar

    [71]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L 2010 Nat. Nanotechnol. 5 722Google Scholar

    [72]

    Nomura K, MacDonald A H 2007 Phys. Rev. Lett. 98 076602Google Scholar

    [73]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206Google Scholar

    [74]

    Hwang E, Adam S, Sarma S D 2007 Phys. Rev. Lett. 98 186806Google Scholar

    [75]

    Ando T 2006 J. Phys. Soc. Jpn. 75 074716Google Scholar

    [76]

    Morozov S, Novoselov K, Katsnelson M, Schedin F, Elias D C, Jaszczak J A, Geim A 2008 Phys. Rev. Lett. 100 016602Google Scholar

    [77]

    Katsnelson M, Geim A 2008 Philos. Trans. R. Soc. London, Ser. A 366 195

    [78]

    Ishigami M, Chen J, Cullen W, Fuhrer M, Williams E 2007 Nano Lett. 7 1643Google Scholar

    [79]

    Fratini S, Guinea F 2008 Phys. Rev. B 77 195415Google Scholar

    [80]

    Duan J, Wang X, Lai X, Li G, Watanabe K, Taniguchi T, Zebarjadi M, Andrei E Y 2016 PNAS 113 14272Google Scholar

    [81]

    Zebarjadi M 2015 Appl. Phys. Lett. 106 203506Google Scholar

    [82]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D 2010 Science 328 213Google Scholar

    [83]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [84]

    Liu X, Zhang G, Pei Q X, Zhang Y W 2013 Appl. Phys. Lett. 103 133113Google Scholar

    [85]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar

    [86]

    Wilson J A, Yoffe A 1969 Adv. Phys. 18 193Google Scholar

    [87]

    Seh Z W, Yu J H, Li W, Hsu P-C, Wang H, Sun Y, Yao H, Zhang Q, Cui Y 2014 Nat. Commun. 5 5017Google Scholar

    [88]

    Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H 2012 ACS Nano 6 74Google Scholar

    [89]

    Wang X, Wang P, Wang J, Hu W, Zhou X, Guo N, Huang H, Sun S, Shen H, Lin T 2015 Adv. Mater. 27 6575Google Scholar

    [90]

    Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong Z J, Ye Z, Ye Y, Yin X, Zhang X 2015 Nat. Nanotechnol. 10 151Google Scholar

    [91]

    Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T F 2014 Nature 514 470Google Scholar

    [92]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B 2012 Nat. Commun. 3 887Google Scholar

    [93]

    Yu H, Yao W 2017 Nat. Mater. 16 876Google Scholar

    [94]

    Wei X, Wang Y, Shen Y, Xie G, Xiao H, Zhong J, Zhang G 2014 Appl. Phys. Lett. 105 103902Google Scholar

    [95]

    Ding Z, Jiang J W, Pei Q X, Zhang Y W 2015 Nanotechnology 26 065703Google Scholar

    [96]

    Zhao Y, Zheng M, Wu J, Huang B, Thong J T 2020 Nanotechnology 31 225702Google Scholar

    [97]

    Peng B, Ning Z, Zhang H, Shao H, Xu Y, Ni G, Zhu H 2016 J. Phys. Chem. C 120 29324Google Scholar

    [98]

    Ding Z, Pei Q X, Jiang J W, Zhang Y W 2015 J. Phys. Chem. C 119 16358Google Scholar

    [99]

    Gu X, Li B, Yang R 2016 J. Appl. Phys. 119 085106Google Scholar

    [100]

    Xu K, Gabourie A J, Hashemi A, Fan Z, Wei N, Farimani A B, Komsa H-P, Krasheninnikov A V, Pop E, Ala-Nissila T 2019 Phys. Rev. B 99 054303Google Scholar

    [101]

    Zhou W, Gong H M, Jin X H, Chen Y, Li H M, Liu S 2022 Front. Phys. 10 842789Google Scholar

    [102]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768Google Scholar

    [103]

    Baugher B W, Churchill H O, Yang Y, Jarillo-Herrero P 2013 Nano Lett. 13 4212Google Scholar

    [104]

    Cai X, Wu Z, Han X, Chen Y, Xu S, Lin J, Han T, He P, Feng X, An L 2022 Nat. Commun. 13 1777Google Scholar

    [105]

    Ng H, Chi D, Hippalgaonkar K 2017 J. Appl. Phys. 121 204303Google Scholar

    [106]

    Yoshida M, Iizuka T, Saito Y, Onga M, Suzuki R, Zhang Y, Iwasa Y, Shimizu S 2016 Nano Lett. 16 2061Google Scholar

    [107]

    Zhao Y, Yu P, Zhang G, Sun M, Chi D, Hippalgaonkar K, Thong J T, Wu J 2020 Adv. Funct. Mater. 30 2004896Google Scholar

    [108]

    Zeng J, He X, Liang S J, Liu E, Sun Y, Pan C, Wang Y, Cao T, Liu X, Wang C 2018 Nano Lett. 18 7538Google Scholar

    [109]

    Lindroth D O, Erhart P 2016 Phys. Rev. B 94 115205Google Scholar

    [110]

    Jiang P, Qian X, Gu X, Yang R 2017 Adv. Mater. 29 1701068Google Scholar

    [111]

    Wickramaratne D, Zahid F, Lake R K 2014 J. Phys. Chem. 140 124710Google Scholar

    [112]

    Imai H, Shimakawa Y, Kubo Y 2001 Phys. Rev. B 64 241104Google Scholar

    [113]

    Qin D, Yan P, Ding G, Ge X, Song H, Gao G 2018 Sci. Rep. 8 2764Google Scholar

    [114]

    Oyedele A D, Yang S, Liang L, Puretzky A A, Wang K, Zhang J, Yu P, Pudasaini P R, Ghosh A W, Liu Z 2017 J. Am. Chem. Soc. 139 14090Google Scholar

    [115]

    Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting I T, Faghaninia A, Chen Y, Jain A 2018 Joule 2 976Google Scholar

    [116]

    Tangpakonsab P, Moontragoon P, Hussain T, Kaewmaraya T 2022 ACS Appl. Energy Mater. 5 13081Google Scholar

    [117]

    Hung N T, Nugraha A R T, Saito R 2017 Appl. Phys. Lett. 111 092107Google Scholar

    [118]

    Hung N T, Nugraha A R T, Yang T, Zhang Z D, Saito R 2019 J. Appl. Phys. 125 082502Google Scholar

    [119]

    Wang Q, Han L, Wu L, Zhang T, Li S, Lu P 2019 Nanoscale Res. Lett. 14 287Google Scholar

    [120]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [121]

    St Laurent B, Dey D, Yu L, Hollen S 2021 ACS Appl. Electron. Mater. 3 4066Google Scholar

    [122]

    Hu Z, Li Q, Lei B, Zhou Q, Xiang D, Lyu Z, Hu F, Wang J, Ren Y, Guo R 2017 Angew. Chem. Int. Ed. 56 9131Google Scholar

    [123]

    Abate Y, Akinwande D, Gamage S, Wang H, Snure M, Poudel N, Cronin S B 2018 Adv. Mater. 30 1704749Google Scholar

    [124]

    Zhang J L, Han C, Hu Z, Wang L, Liu L, Wee A T, Chen W 2018 Adv. Mater. 30 1802207Google Scholar

    [125]

    Lee S, Yang F, Suh J, Yang S, Lee Y, Li G, Choe H S, Suslu A, Chen Y, Ko C 2015 Nat. Commun. 6 8573Google Scholar

    [126]

    Zhao Y, Zhang G, Nai M H, Ding G, Li D, Liu Y, Hippalgaonkar K, Lim C T, Chi D, Li B 2018 Adv. Mater. 30 1804928Google Scholar

    [127]

    Liu H, Choe H S, Chen Y, Suh J, Ko C, Tongay S, Wu J 2017 Appl. Phys. Lett. 111 102101Google Scholar

    [128]

    Luo Z, Maassen J, Deng Y, Du Y, Garrelts R P, Lundstrom M S, Ye P D, Xu X 2015 Nat. Commun. 6 8572Google Scholar

    [129]

    Qin G, Yan Q B, Qin Z, Yue S Y, Hu M, Su G 2015 Phys. Chem. Chem. Phys. 17 4854Google Scholar

    [130]

    Zhao Y, Yang L, Kong L, Nai M H, Liu D, Wu J, Liu Y, Chiam S Y, Chim W K, Lim C T 2017 Adv. Funct. Mater. 27 1702824Google Scholar

    [131]

    Flores E, Ares J R, Castellanos-Gomez A, Barawi M, Ferrer I J, Sánchez C 2015 Appl. Phys. Lett. 106 022102Google Scholar

    [132]

    Zhang J, Liu H, Cheng L, Wei J, Liang J, Fan D, Jiang P, Sun L, Shi J 2016 J. Mater. Chem. C 4 991Google Scholar

    [133]

    Lü H, Lu W, Shao D, Lu H, Sun Y 2016 J. Mater. Chem. C 4 4538Google Scholar

    [134]

    Carrete J, Mingo N, Curtarolo S 2014 Appl. Phys. Lett. 105 101907Google Scholar

    [135]

    Zhang L C, Qin G, Fang W Z, Cui H J, Zheng Q R, Yan Q B, Su G 2016 Sci. Rep. 6 35705Google Scholar

    [136]

    Ding G, Hu Y, Li D, Wang X 2019 Results Phys. 15 102631Google Scholar

    [137]

    Guo R, Wang X, Kuang Y, Huang B 2015 Phys. Rev. B 92 115202Google Scholar

    [138]

    Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar

    [139]

    Zhou C, Lee Y K, Yu Y, Byun S, Luo Z Z, Lee H, Ge B, Lee Y L, Chen X, Lee J Y 2021 Nat. Mater. 20 1378Google Scholar

    [140]

    Sun Y, Shuai Z, Wang D 2019 J. Phys. Chem. C 123 12001Google Scholar

    [141]

    Zhao T, Sun Y, Shuai Z, Wang D 2017 Chem. Mater. 29 6261Google Scholar

    [142]

    Wu M, Zeng X C 2017 Nano Lett. 17 6309Google Scholar

    [143]

    Wu J, Liu Y, Tan Z, Tan C, Yin J, Li T, Tu T, Peng H 2017 Adv. Mater. 29 1704060Google Scholar

    [144]

    Fu Q, Zhu C, Zhao X, Wang X, Chaturvedi A, Zhu C, Wang X, Zeng Q, Zhou J, Liu F 2019 Adv. Mater. 31 1804945Google Scholar

    [145]

    Wu J, Yuan H, Meng M, Chen C, Sun Y, Chen Z, Dang W, Tan C, Liu Y, Yin J 2017 Nat. Nanotechnol. 12 530Google Scholar

    [146]

    Yang F, Wang R, Zhao W, Jiang J, Wei X, Zheng T, Yang Y, Wang X, Lu J, Ni Z 2019 Appl. Phys. Lett. 115 193103Google Scholar

    [147]

    Leburton J P 1984 J. Appl. Phys. 56 2850Google Scholar

    [148]

    Gelmont B, Shur M, Stroscio M 1995 J. Appl. Phys. 77 657Google Scholar

    [149]

    Paul S, Bhattacharya D 1989 Phys. Rev. B 39 13521Google Scholar

    [150]

    Alkan B, Unal B, Ozdemir A 1995 Semicond. Sci. Technol. 10 1458Google Scholar

    [151]

    Zook J D 1964 Phys. Rev. 136 A869Google Scholar

    [152]

    Wang F Q, Guo Y, Wang Q, Kawazoe Y, Jena P 2017 Chem. Mater. 29 9300Google Scholar

    [153]

    Rau J W, Kannewurf C 1971 Phys. Rev. B 3 2581Google Scholar

    [154]

    Li L, Gong P, Sheng D, Wang S, Wang W, Zhu X, Shi X, Wang F, Han W, Yang S 2018 Adv. Mater. 30 1804541Google Scholar

    [155]

    Panasci S, Schilirò E, Migliore F, Cannas M, Gelardi F, Roccaforte F, Giannazzo F, Agnello S 2021 Appl. Phys. Lett. 119 093103Google Scholar

    [156]

    Velicky M, Donnelly G E, Hendren W R, McFarland S, Scullion D, DeBenedetti W J, Correa G C, Han Y, Wain A J, Hines M A 2018 ACS Nano 12 10463Google Scholar

    [157]

    Liu F 2021 Prog. Surf. Sci. 96 100626Google Scholar

    [158]

    Zou B, Zhou Y, Zhou Y, Wu Y, He Y, Wang X, Yang J, Zhang L, Chen Y, Zhou S, Guo H, Sun H 2022 Nano Res. 15 8470Google Scholar

    [159]

    Wu J, Liu Y, Liu Y, Cai Y, Zhao Y, Ng H K, Watanabe K, Taniguchi T, Zhang G, Qiu C W 2020 PNAS 117 13929Google Scholar

    [160]

    Sharma M, Kumar A, Ahluwalia P 2019 Physica E 107 117Google Scholar

    [161]

    Zheng Y, Slade T J, Hu L, Tan X Y, Luo Y, Luo Z Z, Xu J, Yan Q, Kanatzidis M G 2021 Chem. Soc. Rev. 50 9022Google Scholar

    [162]

    Yan Z, Yoon M, Kumar S 2018 2 D Mater. 5 031008

    [163]

    Zhao Y, Zheng M, Wu J, Guan X, Suwardi A, Li Y, Lal M, Xie G, Zhang G, Zhang L 2021 Nanoscale 13 11561Google Scholar

    [164]

    Aiyiti A, Hu S, Wang C, Xi Q, Cheng Z, Xia M, Ma Y, Wu J, Guo J, Wang Q 2018 Nanoscale 10 2727Google Scholar

    [165]

    Chen J H, Li L, Cullen W G, Williams E D, Fuhrer M S 2011 Nat. Phys. 7 535Google Scholar

    [166]

    Takahashi H, Okazaki R, Ishiwata S, Taniguchi H, Okutani A, Hagiwara M, Terasaki I 2016 Nat. Commun. 7 12732Google Scholar

    [167]

    Zhou J, Liao B, Qiu B, Huberman S, Esfarjani K, Dresselhaus M S, Chen G 2015 PNAS 112 14777Google Scholar

    [168]

    Pan Y, Chen S, Wang P, Li Y, Zheng Q 2019 Ceram. Int. 45 19534Google Scholar

    [169]

    Lee W, Lim G, Ko S H 2021 Nano Energy 87 106188Google Scholar

    [170]

    Wu X, Yang N, Luo T 2015 Appl. Phys. Lett. 107 191907Google Scholar

    [171]

    Rosi F 1968 Solid-State Electron. 11 833Google Scholar

    [172]

    Guo Y, Dun C, Xu J, Li P, Huang W, Mu J, Hou C, Hewitt C A, Zhang Q, Li Y 2018 ACS Appl. Mater. Interfaces 10 33316Google Scholar

    [173]

    Ng H K, Abutaha A, Voiry D, Verzhbitskiy I, Cai Y, Zhang G, Liu Y, Wu J, Chhowalla M, Eda G 2019 ACS Appl. Mater. Interfaces 11 12184Google Scholar

    [174]

    An C J, Kang Y H, Lee C, Cho S Y 2018 Adv. Funct. Mater. 28 1800532Google Scholar

    [175]

    Xiang D, Han C, Wu J, Zhong S, Liu Y, Lin J, Zhang X A, Ping Hu W, Özyilmaz B, Neto A 2015 Nat. Commun. 6 8949Google Scholar

    [176]

    Kong S, Wu T, Yuan M, Huang Z, Meng Q L, Jiang Q, Zhuang W, Jiang P, Bao X 2017 J. Mater. Chem. A 5 2004Google Scholar

    [177]

    Perera M M, Lin M W, Chuang H J, Chamlagain B P, Wang C T, Tan X B, Cheng M M C, Tománek D, Zhou Z X 2013 ACS Nano 7 4449Google Scholar

    [178]

    Böttner H, Chen G, Venkatasubramanian R 2006 MRS Bull. 31 211Google Scholar

    [179]

    Venkatasubramanian R, Siivola E, Colpitts T, O'quinn B 2001 Nature 413 597Google Scholar

    [180]

    Harman T, Taylor P, Walsh M, LaForge B 2002 Science 297 2229Google Scholar

    [181]

    Harman T, Taylor P, Spears D, Walsh M 2000 J. Electron. Mater. 29 L1Google Scholar

    [182]

    Hicks L, Harman T, Sun X, Dresselhaus M 1996 Phys. Rev. B 53 R10493Google Scholar

    [183]

    Ding G, He J, Gao G, Yao K 2018 J. Appl. Phys. 124 165101Google Scholar

    [184]

    Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder G J 2015 Nat. Mater. 14 622Google Scholar

    [185]

    Wang S, Yang X, Hou L, Cui X, Zheng X, Zheng J 2022 Nat. Commun. 13 4401Google Scholar

    [186]

    Luckyanova M N, Garg J, Esfarjani K, Jandl A, Bulsara M T, Schmidt A J, Minnich A J, Chen S, Dresselhaus M S, Ren Z 2012 Science 338 936Google Scholar

    [187]

    Zhang G, Zhang Y W 2015 Mech. Mater. 91 382Google Scholar

    [188]

    Peng Z, Chen X, Fan Y, Srolovitz D J, Lei D 2020 Light Sci. Appl. 9 190Google Scholar

    [189]

    Yang S, Chen Y, Jiang C 2021 InfoMat 3 397Google Scholar

    [190]

    Yan Y, Ding S, Wu X, Zhu J, Feng D, Yang X, Li F 2020 RSC Adv. 10 39455Google Scholar

    [191]

    Manzeli S, Allain A, Ghadimi A, Kis A 2015 Nano Lett. 15 5330Google Scholar

    [192]

    Meng L, Zhang Y, Hu S, Wang X, Liu C, Guo Y, Wang X, Yan X 2016 Appl. Phys. Lett. 108 263104Google Scholar

    [193]

    Castellanos-Gomez A, Roldán R, Cappelluti E, Buscema M, Guinea F, van der Zant H S, Steele G A 2013 Nano Lett. 13 5361Google Scholar

    [194]

    Zhu C, Wang G, Liu B, Marie X, Qiao X, Zhang X, Wu X, Fan H, Tan P, Amand T 2013 Phys. Rev. B 88 121301Google Scholar

    [195]

    Ng H K, Xiang D, Suwardi A, Hu G, Yang K, Zhao Y, Liu T, Cao Z, Liu H, Li S 2022 Nat. Electron. 5 489Google Scholar

    [196]

    Jiang J W, Park H S, Rabczuk T 2013 J. Appl. Phys. 114 064307Google Scholar

    [197]

    Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [198]

    Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J, Javey A 2014 Nano Lett. 14 4592Google Scholar

    [199]

    Hoat D, Naseri M, Binh N T, Vu T V, Rivas-Silva J, Obeid M M, Cocoletzi G H 2021 Phys. B:Condens. Matter 603 412757Google Scholar

    [200]

    Qin G, Yan Q B, Qin Z, Yue S Y, Cui H J, Zheng Q R, Su G 2014 Sci. Rep. 4 6946Google Scholar

    [201]

    Bera J, Sahu S 2019 RSC Adv. 9 25216Google Scholar

    [202]

    Qin D, Ge X J, Ding G Q, Gao G Y, Lü J T 2017 RSC Adv. 7 47243Google Scholar

  • [1] 赵俊, 姚璨, 曾晖. 新型正交相BN单层半导体有毒气体吸附性能及电输运性能的理论研究.  , 2024, 73(12): 126802. doi: 10.7498/aps.73.20231621
    [2] 陈晓娟, 徐康, 张秀, 刘海云, 熊启华. 二维材料体光伏效应研究进展.  , 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [3] 罗天麟, 丁亚飞, 韦宝杰, 杜建迎, 沈翔瀛, 朱桂妹, 李保文. 低维微纳尺度体系声子热传导和热调控: 来自芯片散热的非平衡统计物理问题.  , 2023, 72(23): 234401. doi: 10.7498/aps.72.20231546
    [4] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究.  , 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [5] 谢忠祥, 喻霞, 贾聘真, 陈学坤, 邓元祥, 张勇, 周五星. 并苯分子结的热电性质.  , 2023, 72(12): 124401. doi: 10.7498/aps.72.20230354
    [6] 吴成伟, 谢国锋, 周五星. 全固态锂离子电池内部热输运研究前沿.  , 2022, 71(2): 026501. doi: 10.7498/aps.71.20211887
    [7] 李妙聪, 陶前, 许祝安. 铁基超导体的输运性质.  , 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [8] 魏江涛, 杨亮亮, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. 低维纳米材料热电性能测试方法研究.  , 2021, 70(4): 047301. doi: 10.7498/aps.70.20201175
    [9] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算.  , 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [10] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展.  , 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [11] 陈亚琦, 许华慨, 唐东升, 余芳, 雷乐, 欧阳钢. 单根SnO2纳米线器件的电输运性能及其机理研究.  , 2018, 67(24): 246801. doi: 10.7498/aps.67.20181402
    [12] 齐伟华, 马丽, 李壮志, 唐贵德, 吴光恒. 金属价电子结构对磁性和电输运性质的影响.  , 2017, 66(2): 027101. doi: 10.7498/aps.66.027101
    [13] 白继元, 贺泽龙, 李立, 韩桂华, 张彬林, 姜平晖, 樊玉环. 两端线型双量子点分子Aharonov-Bohm干涉仪电输运.  , 2015, 64(20): 207304. doi: 10.7498/aps.64.207304
    [14] 张飞鹏, 张忻, 路清梅, 刘燕琴, 张久兴. Ca位置换Fe的氧化物Ca1-xFexMnO3(x=00.12)的制备及电输运性能.  , 2011, 60(8): 087205. doi: 10.7498/aps.60.087205
    [15] 丁磊, 王聪, 褚立华, 纳元元, 闫君. 反钙钛矿Mn3AX化合物的晶格、磁性和电输运性质的研究进展.  , 2011, 60(9): 097507. doi: 10.7498/aps.60.097507
    [16] 鲍志刚, 陈元平, 欧阳滔, 杨凯科, 钟建新. L型石墨纳米结的热输运.  , 2011, 60(2): 028103. doi: 10.7498/aps.60.028103
    [17] 张飞鹏, 张忻, 路清梅, 张久兴. Ca3-x AgxCo4O9(x=0—0.05)氧化物的电输运性能.  , 2010, 59(6): 4211-4215. doi: 10.7498/aps.59.4211
    [18] 宋超, 陈谷然, 徐骏, 王涛, 孙红程, 刘宇, 李伟, 陈坤基. 不同退火温度下晶化硅薄膜的电学输运性质.  , 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [19] 熊昌民, 孙继荣, 王登京, 沈保根. 厚度与应变效应对La0.67Ca0.33MnO3薄膜电输运与居里温度的影响.  , 2004, 53(11): 3909-3915. doi: 10.7498/aps.53.3909
    [20] 徐刚毅, 王天民, 何宇亮, 马智训, 郑国珍. 纳米硅薄膜的低温电输运机制.  , 2000, 49(9): 1798-1803. doi: 10.7498/aps.49.1798
计量
  • 文章访问数:  9509
  • PDF下载量:  435
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 修回日期:  2022-12-06
  • 上网日期:  2023-01-05
  • 刊出日期:  2023-03-05

/

返回文章
返回
Baidu
map