搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

F4TCNQ/MoS2纳米复合异质材料的表面结构对SERS的影响

刘文英 王公堂 段鹏怡 张文杰 张灿 胡晓璇 刘玫

引用本文:
Citation:

F4TCNQ/MoS2纳米复合异质材料的表面结构对SERS的影响

刘文英, 王公堂, 段鹏怡, 张文杰, 张灿, 胡晓璇, 刘玫

Surface structure effect of F4TCNQ/MoS2 nanocomposite heteromaterials on surface-enhanced Raman scattering

Liu Wen-Ying, Wang Gong-Tang, Duan Peng-Yi, Zhang Wen-Jie, Zhang Can, Hu Xiao-Xuan, Liu Mei
PDF
HTML
导出引用
  • 表面增强拉曼散射(surface-enhanced Raman scattering, SERS)已广泛应用于食品和药物检测、生物和医学传感等领域. 而非金属SERS基底的研究近年来逐渐成为SERS领域研究的热点. 本文研究了2,3,5,6-四氟-7,7,8,8-四氰基喹二甲烷(F4TCNQ)对二硫化钼(MoS2)薄膜SERS活性的调制作用. 不同纳米结构的F4TCNQ可以影响从MoS2表面转移的电子的束缚能力, 从而改变F4TCNQ/MoS2纳米复合材料表面局部功函数分布, 表现出不同的SERS敏感性. 在最优化的F4TCNQ/MoS2纳米复合基底上4-巯基苯甲酸(4-MBA)分子的增强因子可达$ 6.9\times {10}^{4} $, 检测极限浓度低至10–6 mol/L. 本文所研究的F4TCNQ/MoS2纳米复合材料不仅提供了一种良好的SERS活性基底, 而且为化学增强机理的基底研究提供了新的参考.
    Surface-enhanced Raman scattering (SERS) has been widely used in food and drug detection, biological and medical sensing. In recent years, the study of non-metallic SERS substrates has gradually become a hot field of SERS. Here, we investigate the modulation effect on SERS activities of 2,3,5,6-tetrafluoro-7,7,8,8-tetrachyanoquindimethylene (F4TCNQ) grown on molybdenum disulfide (MoS2) films. The different nanostructures of F4TCNQ can have an effect on the bound capability of charges transferred from the surface of MoS2, which changes the electron density distribution on the surface of the F4TCNQ/MoS2 nanocomposite material. Therefore, the interface exhibits different charge localizations in the F4TCNQ/MoS2 nanocomposite. The charge transfer efficiency between the substrate and the adsorbed probe molecules leads the substrate to show a different SERS sensitivity. The enhancement factor of 4-mercaptobenzoic acid (4-MBA) molecules on the most optimized 7-min F4TCNQ/MoS2 nanocomposite substrate can reach $ 6.9\times {10}^{4} $, and the detection limit concentration is as low as 10–6 mol/L. The result of research on F4TCNQ/MoS2 nanocomposite provides an effective optimization scheme of energy level regulation for SERS based on the chemical enhancement mechanism, and opens up a new way to further exploit its functional applications.
      通信作者: 王公堂, wanggt@sdnu.edu.cn ; 刘玫, liumei@sdnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074229)资助的课题
      Corresponding author: Wang Gong-Tang, wanggt@sdnu.edu.cn ; Liu Mei, liumei@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074229).
    [1]

    Zhang W, Ma J, Sun D W 2021 Crit. Rev. Food Sci. Nutr. 61 2623Google Scholar

    [2]

    Zhang D, Pu H, Huang L, Sun D W 2021 Trends Food Sci. Technol. 109 690Google Scholar

    [3]

    Zanchi C, Giuliani L, Lucotti A, Pistaffa M, Trusso S, Neri F, Tommasini M, Ossi P M 2020 Appl. Surf. Sci. 507 145109Google Scholar

    [4]

    Premasiri W R, Lee J C, Sauer-Budge A, Theberge R, Costello C E, Ziegler L D 2016 Anal. Bioanal. Chem. 408 4631Google Scholar

    [5]

    Perumal J, Wang Y, Attia A B E, Dinish U S, Olivo M 2021 Nanoscale 13 553Google Scholar

    [6]

    Wei H, Peng Z, Yang C, Tian Y, Sun L, Wang G, Liu M 2021 Nanomaterials 11 2026Google Scholar

    [7]

    Camden J P, Dieringer J A, Wang Y, Masiello D J, Marks L D, Schatz G C, Van Duyne R P 2008 J. Am. Chem. Soc. 130 12616Google Scholar

    [8]

    Shafi M, Zhou M, Duan P, Liu W, Zhang W, Zha Z, Gao J, Wali S, Jiang S, Man B, Liu M 2022 Sensors and Actuators B: Chem. 356 131360Google Scholar

    [9]

    Wang G, Wei H, Tian Y, Wu M, Sun Q, Peng Z, Sun L, Liu M 2020 Opt. Express 28 18843Google Scholar

    [10]

    Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, Liu Z 2010 Nano Lett. 10 553Google Scholar

    [11]

    Liu M, Shi Y, Zhang G, Zhang Y, Wu M, Ren J, Man B 2018 Appl. Spectrosc. 72 1613Google Scholar

    [12]

    Tian Y, Wei H, Xu Y, et al. 2020 Nanomaterials 10 1910Google Scholar

    [13]

    Ling X, Fang W, Lee Y H, Araujo P T, Zhang X, Rodriguez-Nieva J F, Lin Y, Zhang J, Kong J, Dresselhaus M S 2014 Nano Lett. 14 3033Google Scholar

    [14]

    Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, Lombardi J R 2016 ACS Photon. 3 1164Google Scholar

    [15]

    Li J, Xu X, Huang B, Lou Z, Li B 2021 ACS Appl. Mater. Inter. 13 10047Google Scholar

    [16]

    Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, Geng F, Zhao Z 2017 Nat. Commun. 8 1993Google Scholar

    [17]

    Chen L, Xie Q, Wan L, Zhang W, Fu S, Zhang H, Ling X, Yuan J, Miao L, Shen C, Li X, Zhang W, Zhu B, Wang H-Q 2019 ACS Appl. Energy Mater. 2 5862Google Scholar

    [18]

    Mun J, Kang J, Zheng Y, Luo S, Wu Y, Gong H, Lai J C, Wu H C, Xue G, Tok J B H, Bao Z 2020 Adv. Electron. Mater. 6 2000251Google Scholar

    [19]

    Wang H, Levchenko S V, Schultz T, Koch N, Scheffler M, Rossi M 2019 Adv. Electron. Mater. 5 1800891Google Scholar

    [20]

    Venables J, Spiller G, Hanbucken M 1999 Rep. Prog. Phys. 47 399Google Scholar

    [21]

    Park J, Choudhary N, Smith J, Lee G, Kim M, Choi W 2015 Appl. Phys. Lett. 106 012104Google Scholar

    [22]

    McHale G, Aqil S, Shirtcliffe N J, Newton M I, Erbil H Y 2005 Langmuir 21 11053Google Scholar

    [23]

    Xiao K, Rondinone A J, Puretzky A A, Ivanov I N, Retterer S T, Geohegan D B 2009 Chem. Mater. 21 4275Google Scholar

    [24]

    Newaz A K M, Prasai D, Ziegler J I, Caudel D, Robinson S, Haglund Jr R F, Bolotin K I 2013 Solid State Commun. 155 49Google Scholar

    [25]

    Finkelstein G, Shtrikman H, Bar-Joseph I I 1995 Phys. Rev. Lett. 74 976Google Scholar

    [26]

    Tongay S, Suh J, Ataca C, Fan W, Luce A, Kang J S, Liu J, Ko C, Raghunathanan R, Zhou J, Ogletree F, Li J, Grossman J C, Wu J 2013 Sci. Rep. 3 2657Google Scholar

    [27]

    Ji P, Mao Z, Wang Z, Xue X, Zhang Y, Lv J, Shi X 2019 Nanomaterials 9 983Google Scholar

    [28]

    Wu H, Wang H, Li G 2017 Analyst 142 326Google Scholar

    [29]

    Jiang X, Sun X, Yin D, Li X, Yang M, Han X, Yang L, Zhao B 2017 Phys. Chem. Chem. Phys. 19 11212Google Scholar

    [30]

    Kuhrt R, Hantusch M, Buechner B, Knupfer M 2021 J. Phys. Chem. C 125 18961Google Scholar

    [31]

    Wang J, Ji Z, Yang G, Chuai X, Liu F, Zhou Z, Lu C, Wei W, Shi X, Niu J, Wang L, Wang H, Chen J, Lu N, Jiang C, Li L, Liu M 2018 Adv. Funct. Mater. 28 1806244Google Scholar

    [32]

    Le O K, Chihaia V, Van On V, Son D N 2021 RSC Adv. 11 8033Google Scholar

    [33]

    Ji L F, Fan J X, Zhang S F, Ren A M 2018 Phys. Chem. Chem. Phys. 20 3784Google Scholar

    [34]

    Deneme I, Liman G, Can A, Demirel G, Usta H 2021 Nat. Commun. 12 6119Google Scholar

  • 图 1  (a)纯和(b)喷金MoS2薄膜的扫描电子显微镜图; (c)—(g) 不同生长时间的F4TCNQ/MoS2 (T1—T5)的扫描电子显微镜图(喷金); (f) MoS2薄膜上F4TCNQ纳米岛的数量和直径随时间分布图

    Fig. 1.  SEM images of (a) pure MoS2 and (b) gold-sprayed MoS2 thin films; (c)−(g) SEM images of F4TCNQ/MoS2 (T1−T5) with different growth times (gold-sprayed); (f) the quantity and size distributions of F4TCNQ nanoisland deposited on MoS2 film over time.

    图 2  (a), (b) MoS2薄膜边缘处的AFM图和相应的高度图; (c), (d) 小范围的MoS2薄膜表面的AFM图和相应高度图; (e)—(i) T1—T5样品的形貌图、沿图中直线扫描的高度和接触电势差谱线图

    Fig. 2.  (a), (b) The AFM image and the corresponding height profile of the edge of MoS2 film, respectively. (c), (d) The AFM image and the corresponding height profile of the small range of MoS2 film surfaces, respectively. (e)−(i) The topography of T1−T5 samples, height and CPD spectrum scanned along the line in AFM figures.

    图 3  (a) 10 $\text{μ}\rm{L}$水滴在纯MoS2薄膜和T2基底上的光学图像; (b) F4TCNQ, MoS2和T1—T5的拉曼光谱; (c) F4TCNQ, MoS2和T1—T5的光致发光谱

    Fig. 3.  (a) Optical images of 10 $\text{μ}\rm{L}$ water droplet on pristine MoS2 film and T2 substrate; (b) Raman spectra of F4TCNQ, MoS2 and T1−T5; (c) PL spectra of F4TCNQ, MoS2 and T1−T5.

    图 4  4-MBA分子(10–3 mol/L)在T1—T5上的拉曼光谱(a)及其拉曼峰强度与生长时间之间的关系(b); (c) 5组4-MBA分子(10–3 mol/L)在T1—T5基底上的1593 $ {\rm{c}\rm{m}}^{-1} $处的拉曼峰强度与生长时间之间的关系; (d) 10–3 mol/L浓度的4-MBA分子在不同基底上的拉曼光谱; (e) 不同浓度(10–7—10–3 mol/L)的4-MBA分子在T2上的SERS图谱; (f) T2基底上4-MBA 分子的1097 $ {\rm{c}\rm{m}}^{-1} $和1593 $ {\rm{c}\rm{m}}^{-1} $处的拉曼峰值强度与浓度之间的关系; (g) F4TCNQ/MoS2纳米复合异质结构的电荷转移以及该基底与4-MBA探针分子的电荷转移示意图

    Fig. 4.  The Raman spectra (a) of 4-MBA molecules (10–3 mol/L) on T1−T5 substrates; (b) the interrelationship between the corresponding Raman peak intensities and different growth times in the panel (a); (c) the relationship of the Raman peak intensity at 1593 $ {\rm{c}\rm{m}}^{-1} $ for 5 groups of 4-MBA molecules (10–3 mol/L) on T1−T5 substrates and the growth times; (d) Raman spectra of 4-MBA molecules on different substrates; (e) SERS spectra of 4-MBA molecules on T2 substrate with different concentrations (10–7− 10–3 mol/L); (f) the relationship between the intensity of the SERS peak at 1097 and 1593 $ {\rm{c}\rm{m}}^{-1} $ and different 4-MBA concentrations; (g) the schematic of the charge transfer (CT) pathways in F4TCNQ/MoS2 nanocomposite heterostructures and the CT pathways between F4TCNQ/MoS2 substrate and 4-MBA probe molecule.

    图 5  (a) R6G分子(10–9 mol/L)在T1—T5基底上的拉曼光谱; (b) MB分子(10–5 mol/L)在T1—T5基底上的拉曼光谱; (c) R6G分子的拉曼峰强度与生长时间之间的关系; (d) MB分子的拉曼峰强度与生长时间之间的关系

    Fig. 5.  (a) The Raman spectra of R6G molecules (10–9 mol/L) on T1−T5 substrates; (b) the Raman spectra of MB molecules (10–5 mol/L) on T1−T5 substrates; (c) the interrelationship between the Raman peak intensities of R6G molecules and growth times; (d) the interrelationship between the Raman peak intensities of MB molecules and growth times.

    表 1  MoS2和T1—T5样品的水接触角、CPD和相应的费米能级值

    Table 1.  Water contact angles, CPD values and corresponding Fermi level values on MoS2 and T1−T5 substrates.

    检测基底角度/(°)CPD/$ \rm{V} $费米能级/$ \rm{e}\rm{V} $
    MoS2$ 47\pm 0.2 $0.048–5.08
    T1$ 66.6\pm 1.1 $–0.1–5.23
    T2$ 68\pm 0.9 $–0.043–5.17
    T3$ 70.7\pm 1.6 $–0.168–5.3
    T4$ 71\pm 2.8 $–0.083–5.21
    T5$ 72.6\pm 2 $–0.129–5.26
    下载: 导出CSV
    Baidu
  • [1]

    Zhang W, Ma J, Sun D W 2021 Crit. Rev. Food Sci. Nutr. 61 2623Google Scholar

    [2]

    Zhang D, Pu H, Huang L, Sun D W 2021 Trends Food Sci. Technol. 109 690Google Scholar

    [3]

    Zanchi C, Giuliani L, Lucotti A, Pistaffa M, Trusso S, Neri F, Tommasini M, Ossi P M 2020 Appl. Surf. Sci. 507 145109Google Scholar

    [4]

    Premasiri W R, Lee J C, Sauer-Budge A, Theberge R, Costello C E, Ziegler L D 2016 Anal. Bioanal. Chem. 408 4631Google Scholar

    [5]

    Perumal J, Wang Y, Attia A B E, Dinish U S, Olivo M 2021 Nanoscale 13 553Google Scholar

    [6]

    Wei H, Peng Z, Yang C, Tian Y, Sun L, Wang G, Liu M 2021 Nanomaterials 11 2026Google Scholar

    [7]

    Camden J P, Dieringer J A, Wang Y, Masiello D J, Marks L D, Schatz G C, Van Duyne R P 2008 J. Am. Chem. Soc. 130 12616Google Scholar

    [8]

    Shafi M, Zhou M, Duan P, Liu W, Zhang W, Zha Z, Gao J, Wali S, Jiang S, Man B, Liu M 2022 Sensors and Actuators B: Chem. 356 131360Google Scholar

    [9]

    Wang G, Wei H, Tian Y, Wu M, Sun Q, Peng Z, Sun L, Liu M 2020 Opt. Express 28 18843Google Scholar

    [10]

    Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, Liu Z 2010 Nano Lett. 10 553Google Scholar

    [11]

    Liu M, Shi Y, Zhang G, Zhang Y, Wu M, Ren J, Man B 2018 Appl. Spectrosc. 72 1613Google Scholar

    [12]

    Tian Y, Wei H, Xu Y, et al. 2020 Nanomaterials 10 1910Google Scholar

    [13]

    Ling X, Fang W, Lee Y H, Araujo P T, Zhang X, Rodriguez-Nieva J F, Lin Y, Zhang J, Kong J, Dresselhaus M S 2014 Nano Lett. 14 3033Google Scholar

    [14]

    Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, Lombardi J R 2016 ACS Photon. 3 1164Google Scholar

    [15]

    Li J, Xu X, Huang B, Lou Z, Li B 2021 ACS Appl. Mater. Inter. 13 10047Google Scholar

    [16]

    Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, Geng F, Zhao Z 2017 Nat. Commun. 8 1993Google Scholar

    [17]

    Chen L, Xie Q, Wan L, Zhang W, Fu S, Zhang H, Ling X, Yuan J, Miao L, Shen C, Li X, Zhang W, Zhu B, Wang H-Q 2019 ACS Appl. Energy Mater. 2 5862Google Scholar

    [18]

    Mun J, Kang J, Zheng Y, Luo S, Wu Y, Gong H, Lai J C, Wu H C, Xue G, Tok J B H, Bao Z 2020 Adv. Electron. Mater. 6 2000251Google Scholar

    [19]

    Wang H, Levchenko S V, Schultz T, Koch N, Scheffler M, Rossi M 2019 Adv. Electron. Mater. 5 1800891Google Scholar

    [20]

    Venables J, Spiller G, Hanbucken M 1999 Rep. Prog. Phys. 47 399Google Scholar

    [21]

    Park J, Choudhary N, Smith J, Lee G, Kim M, Choi W 2015 Appl. Phys. Lett. 106 012104Google Scholar

    [22]

    McHale G, Aqil S, Shirtcliffe N J, Newton M I, Erbil H Y 2005 Langmuir 21 11053Google Scholar

    [23]

    Xiao K, Rondinone A J, Puretzky A A, Ivanov I N, Retterer S T, Geohegan D B 2009 Chem. Mater. 21 4275Google Scholar

    [24]

    Newaz A K M, Prasai D, Ziegler J I, Caudel D, Robinson S, Haglund Jr R F, Bolotin K I 2013 Solid State Commun. 155 49Google Scholar

    [25]

    Finkelstein G, Shtrikman H, Bar-Joseph I I 1995 Phys. Rev. Lett. 74 976Google Scholar

    [26]

    Tongay S, Suh J, Ataca C, Fan W, Luce A, Kang J S, Liu J, Ko C, Raghunathanan R, Zhou J, Ogletree F, Li J, Grossman J C, Wu J 2013 Sci. Rep. 3 2657Google Scholar

    [27]

    Ji P, Mao Z, Wang Z, Xue X, Zhang Y, Lv J, Shi X 2019 Nanomaterials 9 983Google Scholar

    [28]

    Wu H, Wang H, Li G 2017 Analyst 142 326Google Scholar

    [29]

    Jiang X, Sun X, Yin D, Li X, Yang M, Han X, Yang L, Zhao B 2017 Phys. Chem. Chem. Phys. 19 11212Google Scholar

    [30]

    Kuhrt R, Hantusch M, Buechner B, Knupfer M 2021 J. Phys. Chem. C 125 18961Google Scholar

    [31]

    Wang J, Ji Z, Yang G, Chuai X, Liu F, Zhou Z, Lu C, Wei W, Shi X, Niu J, Wang L, Wang H, Chen J, Lu N, Jiang C, Li L, Liu M 2018 Adv. Funct. Mater. 28 1806244Google Scholar

    [32]

    Le O K, Chihaia V, Van On V, Son D N 2021 RSC Adv. 11 8033Google Scholar

    [33]

    Ji L F, Fan J X, Zhang S F, Ren A M 2018 Phys. Chem. Chem. Phys. 20 3784Google Scholar

    [34]

    Deneme I, Liman G, Can A, Demirel G, Usta H 2021 Nat. Commun. 12 6119Google Scholar

  • [1] 郑林启, 时术华, 李金泽, 王子宇, 李爽. 高温退火优化h-BN/Ag/Ag2O异质结构型及表面增强拉曼散射性能研究.  , 2023, 72(22): 227401. doi: 10.7498/aps.72.20231105
    [2] 厉桂华, 张梦雅, 马慧, 田悦, 焦安欣, 郑林启, 王畅, 陈明, 刘向东, 李爽, 崔清强, 李冠华. 低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测.  , 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [3] 姚惠东, 崔波, 马思琦, 余超, 陆瑞锋. 原子错位堆栈增强双层MoS2高次谐波产率.  , 2021, 70(13): 134207. doi: 10.7498/aps.70.20210731
    [4] 李健康, 李睿. 利用数值模拟研究表面增强相干反斯托克斯拉曼散射增强基底.  , 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [5] 赵星, 郝祺, 倪振华, 邱腾. 单分子表面增强拉曼散射的光谱特性及分析方法.  , 2021, 70(13): 137401. doi: 10.7498/aps.70.20201447
    [6] 刘小红, 姜珊, 常林, 张炜. 非贵金属表面增强拉曼散射基底的研究进展.  , 2020, 69(19): 190701. doi: 10.7498/aps.69.20200788
    [7] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性.  , 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [8] 王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究.  , 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [9] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射.  , 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [10] 李金华, 张思楠, 翟英娇, 马剑刚, 房文汇, 张昱. MoS2及其金属复合表面增强拉曼散射基底的发展及应用.  , 2019, 68(13): 134203. doi: 10.7498/aps.68.20182113
    [11] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究.  , 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [12] 李斌, 罗时文, 余安澜, 熊东升, 王新兵, 左都罗. 共焦腔增强的空气拉曼散射.  , 2017, 66(19): 190703. doi: 10.7498/aps.66.190703
    [13] 郭旭东, 唐军, 刘文耀, 郭浩, 房国成, 赵苗苗, 王磊, 夏美晶, 刘俊. 锥柱型光纤探针在表面增强拉曼散射方面的应用.  , 2017, 66(4): 044208. doi: 10.7498/aps.66.044208
    [14] 王凯, 张文华, 刘凌云, 徐法强. VO2薄膜表面氧缺陷的修复:F4TCNQ分子吸附反应.  , 2016, 65(8): 088101. doi: 10.7498/aps.65.088101
    [15] 邵辉丽, 李栋, 闫雪, 陈丽清, 袁春华. 基于增强拉曼散射的光子-原子双模压缩态的实现.  , 2014, 63(1): 014202. doi: 10.7498/aps.63.014202
    [16] 张然, 肖鑫泽, 吕超, 骆杨, 徐颖. 金纳米棒的飞秒激光组装研究.  , 2014, 63(1): 014206. doi: 10.7498/aps.63.014206
    [17] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华. 界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究.  , 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [18] 黄茜, 熊绍珍, 赵颖, 张晓丹. 表面等离子激元非线性表面增强拉曼散射效应.  , 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [19] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究.  , 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [20] 吴青松, 赵 岩, 张彩碚, 李 峰. 片状三角形银纳米颗粒的自组织行为与光学特性.  , 2005, 54(3): 1452-1456. doi: 10.7498/aps.54.1452
计量
  • 文章访问数:  4011
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-13
  • 修回日期:  2022-11-11
  • 上网日期:  2022-11-22
  • 刊出日期:  2023-02-05

/

返回文章
返回
Baidu
map