-
基于衍射原理和模耦合理论, 提出了一种由亚波长介质光栅/金属-电介质-金属(metal-dielectric-metal, MDM)波导/周期性光子晶体组成的复合微纳结构. 结合反射角谱深入分析了表面等离子激元的传输特性以及在固定波长下不同入射角时刻形成的双重Fano共振的产生机理. 研究表明, 双重Fano共振是由在亚波长介质光栅/MDM波导结合的上层结构中产生的独立可调的双离散态分别与在周期性光子晶体中形成的连续态相互耦合形成的. 接着定量讨论了结构参数对双重Fano特性的影响, 探究了双重Fano共振的演变规律. 结果表明, 改变结构参数可实现双Fano共振曲线和谐振角度之间的调谐, 且在最优条件下, 共振A区FR a和FR b的品质因数(figure of merit, FOM)可高达460.0和
$ 4.00 \times {10^4} $ , 共振B区FR a和FR b的FOM值可高达269.2和$ 2.22 \times {10^4} $ . 该结构可为基于Fano共振的折射率传感器设计提供有效的理论参考.Based on the diffraction principle and the mode coupling theory, a composite micro-nano structure of sub-wavelength dielectric grating/metal-dielectric-metal (MDM) waveguide/periodic photonic crystal is proposed. Combined with the angle spectrum of reflection, the transmission characteristics of the surface plasmon polaritons and the generation mechanism of double Fano resonances at different incident angles and fixed wavelength are analyzed. The studies show that the physical mechanism of double Fano resonances is that the surface plasmon resonance generated at the interface of sub-wavelength dielectric grating and upper metal Ag film, and the waveguide mode resonance occurring in the MDM waveguide, provide the independently tunable double discrete states, under the condition of satisfying wave vector matching, which can be respectively coupled in the near field with the continuous state formed by the photonic band gap effect in the photonic crystal, thereby achieving the double Fano resonances. Then the influence of the structural parameters on the double Fano characteristics is analyzed quantitatively, and the evolution law of the double Fano resonances is explored by the change of the reflection spectra of resonance curves. The results show that the tuning between double Fano resonance curves and the resonance angles can be realized by changing the structural parameters. And under optimal conditions, the figure of merit (FOM) values of FR a and FR b in resonance A region can be as high as 460.0 and$ 4.00 \times {10^4} $ , and the FOM values of FR a and FR b in resonance B region can be as high as 269.2 and$ 2.22 \times {10^4} $ . The structure can provide an effective theoretical reference for designing the refractive index sensors based on Fano resonances.-
Keywords:
- diffraction principle /
- mode coupling /
- surface plasmon polaritons /
- double Fano resonances
[1] Takashima Y, Haraguchi M, Naoi Y 2019 Opt. Rev. 26 466Google Scholar
[2] Li L X, Liang Y Z, Lu M D, Peng W 2016 Plasmonics 11 139Google Scholar
[3] Panda A, Pukhrambam P D 2021 Opt. Quantum Electron. 53 357Google Scholar
[4] Ji C G, Yang C Y, Shen W D, Lee K T, Zhang Y G, Liu X, Guo L J 2019 Nano Res. 12 543Google Scholar
[5] Liang C P, Yi Z, Chen X F, Tang Y J, Yi Y, Zhou Z G, Wu X G, Huang Z, Yi Y G, Zhang G F 2020 Plasmonics 15 93Google Scholar
[6] 祁云平, 张婷, 郭嘉, 张宝和, 王向贤 2020 69 167301Google Scholar
Qi Y P, Zhang T, Guo J, Zhang B H, Wang X X 2020 Acta Phys. Sin. 69 167301Google Scholar
[7] Yu J, Men H J, Zhang J W, Zhang X W, Tian N 2020 J. Electron. Mater. 49 4469Google Scholar
[8] Bellucci S, Fitio V, Yaremchuk I, Vernyhor O, Bendziak A, Bobitski Y 2020 Symmetry 12 1315Google Scholar
[9] Wang J Y, Wang Q, Li Y, Chen P, Huang T, Dai B, Huang Y S, Zhang D W 2016 J. Opt. 45 302Google Scholar
[10] Zhao Y, Huo Y Y, Man B Y, Ning T Y 2019 Plasmonics 14 1911Google Scholar
[11] Suresh R, Rao K D, Udupa D V, Kumar S, Prathap C, Sahoo N K 2017 Optik 136 112Google Scholar
[12] Trabelsi Y, Ali N B, Belhadj W, Kanzari M 2019 J. Supercond. Novel Magn. 32 3541Google Scholar
[13] Klimov V V, Pavlov A A, Treshin L V, Zabkov L V 2017 J. Phys. D: Appl. Phys. 50 285101Google Scholar
[14] Chen Y W, Bian L A, Liu P G, Li G S, Xie Y C 2018 Superlattice Microstruct. 124 185Google Scholar
[15] Jiang H D, Zheng G G, Rao W F 2019 Results Phys. 13 102173Google Scholar
[16] Zhao T G, Yu S L 2018 Plasmonics 13 1115Google Scholar
[17] Gao H, Li P L, Yang S D 2020 Opt. Commun. 457 124688Google Scholar
[18] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华 2019 68 237301Google Scholar
Chen Y, Xie J C, Zhou X D, Zhang C, Yang H, Li S H 2019 Acta Phys. Sin. 68 237301Google Scholar
[19] Zhang J, Zhang X P 2015 Opt. Express 23 30429Google Scholar
[20] Bahrami F, Aitchison J S, Mojahedi M 2015 IEEE Photon. J. 7 1Google Scholar
[21] Yi X C, Tian J P, Yang R C 2018 Eur. Phys. J. D 72 60Google Scholar
[22] Wen K H, Hu Y H, Chen L, Zhou J Y, Lei L, Meng Z M 2016 Plasmonics 11 315Google Scholar
[23] Keleshtery M H, Mir A, Kaatuzian H 2018 Plasmonics 13 1523Google Scholar
[24] Zhang J J, Yang J B, Liang L M, Wu W J 2018 Opt. Commun. 407 46Google Scholar
-
图 2 结构曲线图 (a) 连续态光谱图; (b) 连续态角谱图; (c) 双离散态角谱图; (d) 相位角谱图; (e) 双Fano共振形成角谱图
Fig. 2. Structural diagram: (a) Continuous spectrum; (b) continuous state angular spectrum diagram; (c) double discrete states angular spectrum diagram; (d) phase angular spectrum diagram; (e) double Fano resonances form angular spectrum diagram.
-
[1] Takashima Y, Haraguchi M, Naoi Y 2019 Opt. Rev. 26 466Google Scholar
[2] Li L X, Liang Y Z, Lu M D, Peng W 2016 Plasmonics 11 139Google Scholar
[3] Panda A, Pukhrambam P D 2021 Opt. Quantum Electron. 53 357Google Scholar
[4] Ji C G, Yang C Y, Shen W D, Lee K T, Zhang Y G, Liu X, Guo L J 2019 Nano Res. 12 543Google Scholar
[5] Liang C P, Yi Z, Chen X F, Tang Y J, Yi Y, Zhou Z G, Wu X G, Huang Z, Yi Y G, Zhang G F 2020 Plasmonics 15 93Google Scholar
[6] 祁云平, 张婷, 郭嘉, 张宝和, 王向贤 2020 69 167301Google Scholar
Qi Y P, Zhang T, Guo J, Zhang B H, Wang X X 2020 Acta Phys. Sin. 69 167301Google Scholar
[7] Yu J, Men H J, Zhang J W, Zhang X W, Tian N 2020 J. Electron. Mater. 49 4469Google Scholar
[8] Bellucci S, Fitio V, Yaremchuk I, Vernyhor O, Bendziak A, Bobitski Y 2020 Symmetry 12 1315Google Scholar
[9] Wang J Y, Wang Q, Li Y, Chen P, Huang T, Dai B, Huang Y S, Zhang D W 2016 J. Opt. 45 302Google Scholar
[10] Zhao Y, Huo Y Y, Man B Y, Ning T Y 2019 Plasmonics 14 1911Google Scholar
[11] Suresh R, Rao K D, Udupa D V, Kumar S, Prathap C, Sahoo N K 2017 Optik 136 112Google Scholar
[12] Trabelsi Y, Ali N B, Belhadj W, Kanzari M 2019 J. Supercond. Novel Magn. 32 3541Google Scholar
[13] Klimov V V, Pavlov A A, Treshin L V, Zabkov L V 2017 J. Phys. D: Appl. Phys. 50 285101Google Scholar
[14] Chen Y W, Bian L A, Liu P G, Li G S, Xie Y C 2018 Superlattice Microstruct. 124 185Google Scholar
[15] Jiang H D, Zheng G G, Rao W F 2019 Results Phys. 13 102173Google Scholar
[16] Zhao T G, Yu S L 2018 Plasmonics 13 1115Google Scholar
[17] Gao H, Li P L, Yang S D 2020 Opt. Commun. 457 124688Google Scholar
[18] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华 2019 68 237301Google Scholar
Chen Y, Xie J C, Zhou X D, Zhang C, Yang H, Li S H 2019 Acta Phys. Sin. 68 237301Google Scholar
[19] Zhang J, Zhang X P 2015 Opt. Express 23 30429Google Scholar
[20] Bahrami F, Aitchison J S, Mojahedi M 2015 IEEE Photon. J. 7 1Google Scholar
[21] Yi X C, Tian J P, Yang R C 2018 Eur. Phys. J. D 72 60Google Scholar
[22] Wen K H, Hu Y H, Chen L, Zhou J Y, Lei L, Meng Z M 2016 Plasmonics 11 315Google Scholar
[23] Keleshtery M H, Mir A, Kaatuzian H 2018 Plasmonics 13 1523Google Scholar
[24] Zhang J J, Yang J B, Liang L M, Wu W J 2018 Opt. Commun. 407 46Google Scholar
计量
- 文章访问数: 5111
- PDF下载量: 132
- 被引次数: 0