搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双表面等离子激元吸收的纳米光刻

刘仿 李云翔 黄翊东

引用本文:
Citation:

基于双表面等离子激元吸收的纳米光刻

刘仿, 李云翔, 黄翊东

Nanolithography based on two-surface-plasmon-polariton-absorption

Liu Fang, Li Yun-Xiang, Huang Yi-Dong
PDF
导出引用
  • 光刻技术(lithography)是微纳结构制备的关键技术之一.受限于光的衍射极限,传统光刻方法进一步缩小特征尺寸变得越来越难.表面等离子激元(surface plasmon polariton,SPP)作为光与金属表面自由电子密度振荡相互耦合形成的一种特殊电磁形式,具有波长短、场密度大、异常色散等特点,在突破传统光学衍射极限的研究和应用中具有重要的学术和实用价值.本文针对SPP在光刻胶中的非线性吸收及其在大视场纳米光刻中的应用进行了理论和实验探索.在回顾SPP概念的基础上,阐述了双SPP吸收的概念及其应用于纳米光刻的优势,明确了该效应具有与传统双光子吸收不同的内涵和特性.在800和400 nm飞秒激光的作用下,实现了基于双SPP吸收效应的周期干涉条纹,同时验证了双SPP吸收的阈值效应,通过控制曝光计量实现了图形线宽的调控,最小线宽小于真空光波长的1/10.利用SPP波长短、场增强的特点,并结合非线性吸收的阈值效应,单次曝光区域比纳米图形尺度大4-5个数量级,曝光区域的直径可达1.6 mm.同时制备出较为复杂的同心圆环结构.基于双SPP吸收独有的特性以及SPP丰富的模式,有望进一步在大光刻视场、超小尺度图形光刻技术上获得突破.
    Lithography is one of most important technologies for fabricating micro- and nano-structures. Limited by the light diffraction limit, it becomes more and more difficult to reduce the feature size of lithography. Surface plasmon polariton (SPP) is due to the interaction between electromagnetic wave and oscillation of free-electron on metal surface. For the shorter wavelength, higher field intensity and abnormal dispersion relation, the SPP would play an important role in breaking through the diffraction limit and realizing nanolithography. In this paper, we theoretically and experimentally study the optical nonlinear effect of SPP (two-SPP-absorption) in the photoresist and its application of nanolithography with large field. First, the concept and features of two-SPP-absorption are introduced. Like two-photo-absorption, the two-SPP-absorption based lithography is able to realize nanopatterns beyond the diffraction limit: 1) the absorption rate quadratically depends on the light intensity, which can further squeeze the exposure spot; 2) the pronounced power threshold provides a possibility for precisely controlling the linewidth by manipulating the illumination power. Nevertheless, unlike the two-photo-absorption lithography which focuses light onto a single spot and scans point by point, the two-SPP-absorption method could obtain the subwavelength field pattern by simply illuminating the plasmonic mask. The subwavelength field pattern due to the short wavelength of SPP would further result in the overcoming-diffraction-limit resist pattern. Besides, the highly concentrated SPP field leads to the strong electromagnetic field enhancement at the metal-dielectric interface, which could reduce the input power density of exposure source or enlarge the exposure area. Then the two-SPP absorption is realized under the illuminations of femtosecond lasers with vacuum wavelengths of 800 nm and 400 nm. Meanwhile, the interference periodic patternis realized and it is observed that the linewidth could be adjusted by controlling the exposure dose. The minimum linewidth of resist pattern is only one tenth of the vacuum wavelength. By utilizing the features of two-SPP-absorption, namely shorter wavelength, enhanced field and threshold effect, the lithography field could be of millimeter size, which is about four to five orders of magnitude larger than the characteristic size of nanostructure. Therefore, this two-SPP-absorption scheme could be used for large-area plasmonic lithography beyond the diffraction limit with the help of various plasmonic structures and modes.
    [1]

    Mack C 2008 Fundamental Principles of Optical Lithography: the Science of Microfabrication (Hoboken: John Wiley Sons)

    [2]

    Bakshi V 2009 EUV Lithography (Vol. 178) (Bellingham: Spie Press)

    [3]

    Cumpston B H, Ananthavel S P, Barlow S, Dyer D L, Ehrlich J E, Erskine L L, Heikal A A, Kuebler S M, Lee I Y S, McCord-Maughon D, Qin J 1999 Nature 398 51

    [4]

    Srituravanich W, Fang N, Sun C, Luo Q, Zhang X 2004 Nano Lett. 4 1085

    [5]

    Chou S Y, Krauss P R, Renstrom P J 1996 J. Vacuum Sci. Technol. B: Microelectr. Nanometer Struct. Process. Measur. Phenom. 14 4129

    [6]

    Zhai T, Zhang X, Pang Z, Dou F 2011 Adv. Mater. 23 1860

    [7]

    Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Reports 408 131

    [8]

    Brongersma M L, Kik P G 2007 Surface Plasmon Nanophotonics. (Berlin: Springer)

    [9]

    Srituravanich W, Durant S, Lee H Sun C, Zhang X 2005 J. Vacuum Sci. Technol. B: Microelectr. Nanometer Struct. Process. Measur. Phenom. 23 2636

    [10]

    Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780

    [11]

    Seo S, Kim, H C, Ko H, Cheng M 2007 J. Vacuum Sci. Technol. B: Microelectr. Nanometer Struct. Process. Measur. Phenom. 25 2271

    [12]

    Srituravanich W, Pan L, Wang Y, Sun C, Bogy D B, Zhang X 2008 Nature Nanotechnol. 3 733

    [13]

    Pan L, Park Y, Xiong Y, Ulin-Avila E, Wang Y, Zeng L, Xiong S, Rho J, Sun C, Bogy D B, Zhang X 2011 Sci. Reports 1 175

    [14]

    Melville D O, Blaikie R J 2005 Opt. Express 13 2127

    [15]

    Sun H B, Kawata S 2004 In NMR3D Analysis Photopolymerization (Berlin: Springer Berlin Heidelberg) pp169-273

    [16]

    Lee K S, Yang D Y, Park S H, Kim R H 2006 Polym. Adv. Technol. 17 72

    [17]

    Park S H, Yang D Y, Lee K S 2009 Laser Photon. Rev. 3 1

    [18]

    Li Y X 2014 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [李云翔 2014 博士学位论文 (北京: 清华大学)]

    [19]

    Bellan P M 2008 Fundamentals of Plasma Physics (Cambridge: Cambridge University Press)

    [20]

    Ritchie R H 1957 Phys. Rev. 106 874

    [21]

    Ponath H E, Stegeman G I 2012 Nonlinear Surface Electromagnetic Phenomena (Vol. 29) (Amsterdam: Elsevier)

    [22]

    Raether H 2013 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer-Verlag Berlin)

    [23]

    Pines D 1956 Rev. Modern Phys. 28 184

    [24]

    Raether H 2006 Excitation of Plasmons and Interband Transitions by Electrons (Vol. 88) (Berlin: Springer)

    [25]

    Chen D Z A 2007 Ph. D. Dissertation (Massachusetts: Massachusetts Institute of Technology)

    [26]

    Hopfield J J 1958 Phys. Rev. 112 1555

    [27]

    Li Y, Liu F, Xiao L, Cui K, Feng X, Zhang W, Huang Y 2013 Appl. Phys. Lett. 102 063113

    [28]

    Palik E D 1998 Handbook of Optical Constants of Solids (Vol. 3) (Cambridge: Academic Press)

    [29]

    Li Y, Liu F, Ye Y, Meng W, Cui K, Feng X, Zhang W, Huang Y 2014 Appl. Phys. Lett. 104 081115

    [30]

    Meng W S 2015 M. S. Dissertation (Beijing: Tsinghua University) (in Chinese) [孟维思 2015 硕士学位论文 (北京: 清华大学)]

    [31]

    Fu Y, Zhou X 2010 Plasmonics 5 287

    [32]

    Carretero-Palacios S, Mahboub O, Garcia-Vidal F J, Martin-Moreno L, Rodrigo S G, Genet C, Ebbesen T W 2011 Opt. Express 19 10429

    [33]

    Gao Y, Gan Q, Bartoli F J 2014 IEEE Photon. J. 6 1

    [34]

    Gao Y, Xin Z, Zeng B, Gan Q, Cheng X, Bartoli F J 2013 Lab on a Chip 13 4755

  • [1]

    Mack C 2008 Fundamental Principles of Optical Lithography: the Science of Microfabrication (Hoboken: John Wiley Sons)

    [2]

    Bakshi V 2009 EUV Lithography (Vol. 178) (Bellingham: Spie Press)

    [3]

    Cumpston B H, Ananthavel S P, Barlow S, Dyer D L, Ehrlich J E, Erskine L L, Heikal A A, Kuebler S M, Lee I Y S, McCord-Maughon D, Qin J 1999 Nature 398 51

    [4]

    Srituravanich W, Fang N, Sun C, Luo Q, Zhang X 2004 Nano Lett. 4 1085

    [5]

    Chou S Y, Krauss P R, Renstrom P J 1996 J. Vacuum Sci. Technol. B: Microelectr. Nanometer Struct. Process. Measur. Phenom. 14 4129

    [6]

    Zhai T, Zhang X, Pang Z, Dou F 2011 Adv. Mater. 23 1860

    [7]

    Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Reports 408 131

    [8]

    Brongersma M L, Kik P G 2007 Surface Plasmon Nanophotonics. (Berlin: Springer)

    [9]

    Srituravanich W, Durant S, Lee H Sun C, Zhang X 2005 J. Vacuum Sci. Technol. B: Microelectr. Nanometer Struct. Process. Measur. Phenom. 23 2636

    [10]

    Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780

    [11]

    Seo S, Kim, H C, Ko H, Cheng M 2007 J. Vacuum Sci. Technol. B: Microelectr. Nanometer Struct. Process. Measur. Phenom. 25 2271

    [12]

    Srituravanich W, Pan L, Wang Y, Sun C, Bogy D B, Zhang X 2008 Nature Nanotechnol. 3 733

    [13]

    Pan L, Park Y, Xiong Y, Ulin-Avila E, Wang Y, Zeng L, Xiong S, Rho J, Sun C, Bogy D B, Zhang X 2011 Sci. Reports 1 175

    [14]

    Melville D O, Blaikie R J 2005 Opt. Express 13 2127

    [15]

    Sun H B, Kawata S 2004 In NMR3D Analysis Photopolymerization (Berlin: Springer Berlin Heidelberg) pp169-273

    [16]

    Lee K S, Yang D Y, Park S H, Kim R H 2006 Polym. Adv. Technol. 17 72

    [17]

    Park S H, Yang D Y, Lee K S 2009 Laser Photon. Rev. 3 1

    [18]

    Li Y X 2014 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [李云翔 2014 博士学位论文 (北京: 清华大学)]

    [19]

    Bellan P M 2008 Fundamentals of Plasma Physics (Cambridge: Cambridge University Press)

    [20]

    Ritchie R H 1957 Phys. Rev. 106 874

    [21]

    Ponath H E, Stegeman G I 2012 Nonlinear Surface Electromagnetic Phenomena (Vol. 29) (Amsterdam: Elsevier)

    [22]

    Raether H 2013 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer-Verlag Berlin)

    [23]

    Pines D 1956 Rev. Modern Phys. 28 184

    [24]

    Raether H 2006 Excitation of Plasmons and Interband Transitions by Electrons (Vol. 88) (Berlin: Springer)

    [25]

    Chen D Z A 2007 Ph. D. Dissertation (Massachusetts: Massachusetts Institute of Technology)

    [26]

    Hopfield J J 1958 Phys. Rev. 112 1555

    [27]

    Li Y, Liu F, Xiao L, Cui K, Feng X, Zhang W, Huang Y 2013 Appl. Phys. Lett. 102 063113

    [28]

    Palik E D 1998 Handbook of Optical Constants of Solids (Vol. 3) (Cambridge: Academic Press)

    [29]

    Li Y, Liu F, Ye Y, Meng W, Cui K, Feng X, Zhang W, Huang Y 2014 Appl. Phys. Lett. 104 081115

    [30]

    Meng W S 2015 M. S. Dissertation (Beijing: Tsinghua University) (in Chinese) [孟维思 2015 硕士学位论文 (北京: 清华大学)]

    [31]

    Fu Y, Zhou X 2010 Plasmonics 5 287

    [32]

    Carretero-Palacios S, Mahboub O, Garcia-Vidal F J, Martin-Moreno L, Rodrigo S G, Genet C, Ebbesen T W 2011 Opt. Express 19 10429

    [33]

    Gao Y, Gan Q, Bartoli F J 2014 IEEE Photon. J. 6 1

    [34]

    Gao Y, Xin Z, Zeng B, Gan Q, Cheng X, Bartoli F J 2013 Lab on a Chip 13 4755

  • [1] 蒋忠君, 何伟, 陈经纬, 罗丹洋, 杨帆, 蒋凯, 王亮. 菲涅尔衍射光刻.  , 2023, 72(1): 014202. doi: 10.7498/aps.72.20221533
    [2] 陈颖, 周健, 丁志欣, 张敏, 朱奇光. 亚波长介质光栅/MDM波导/周期性光子晶体中双重Fano共振的形成及演变规律分析.  , 2022, 71(3): 034202. doi: 10.7498/aps.71.20211491
    [3] 耿逸飞, 王铸宁, 马耀光, 高飞. 拓扑表面等离激元.  , 2019, 68(22): 224101. doi: 10.7498/aps.68.20191085
    [4] 孙悦, 曲斌, 全保刚. 碳纳米管/二硒化钼有机玻璃的非线性吸收、非线性散射和光限幅特性.  , 2018, 67(23): 236201. doi: 10.7498/aps.67.20181583
    [5] 林丹樱, 屈军乐. 超分辨成像及超分辨关联显微技术研究进展.  , 2017, 66(14): 148703. doi: 10.7498/aps.66.148703
    [6] 胡睿璇, 潘冰洋, 杨玉龙, 张伟华. 基于线性成像系统的光学超分辨显微术回顾.  , 2017, 66(14): 144209. doi: 10.7498/aps.66.144209
    [7] 蒲明博, 王长涛, 王彦钦, 罗先刚. 衍射极限尺度下的亚波长电磁学.  , 2017, 66(14): 144101. doi: 10.7498/aps.66.144101
    [8] 刘鸿吉, 刘双龙, 牛憨笨, 陈丹妮, 刘伟. 基于环形抽运光的红外超分辨显微成像方法.  , 2016, 65(23): 233601. doi: 10.7498/aps.65.233601
    [9] 杨傅子. 从plasmon到nanoplasmonics——近代光子学前沿及液晶在其动态调制中的应用.  , 2015, 64(12): 124214. doi: 10.7498/aps.64.124214
    [10] 吴青峻, 吴凡, 孙理斌, 胡晓琳, 叶鸣, 徐越, 史斌, 谢昊, 夏娟, 蒋建中, 张冬仙. 基于表面等离子激元的超薄金属减色滤波器的研究.  , 2014, 63(20): 207801. doi: 10.7498/aps.63.207801
    [11] 王五松, 张利伟, 冉佳, 张冶文. 微波频段表面等离子激元波导滤波器的实验研究.  , 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [12] 周振婷, 杨理, 姚洁, 叶燃, 徐欢欢, 叶永红. 多层金属纳米点阵的制备及其光学性质的研究.  , 2013, 62(18): 188104. doi: 10.7498/aps.62.188104
    [13] 黄茜, 张德坤, 熊绍珍, 赵颖, 张晓丹. 降低表面等离子激元寄生吸收损失的途径研究.  , 2012, 61(21): 217301. doi: 10.7498/aps.61.217301
    [14] 佟建波, 黄茜, 张晓丹, 张存善, 赵颖. 纳米Ag颗粒表面等离子激元对上转换材料光致发光性能影响的研究.  , 2012, 61(4): 047801. doi: 10.7498/aps.61.047801
    [15] 黄茜, 熊绍珍, 赵颖, 张晓丹. 表面等离子激元非线性表面增强拉曼散射效应.  , 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [16] 宋国峰, 汪卫敏, 蔡利康, 郭宝山, 王青, 徐云, 韦欣, 刘运涛. 表面等离子激元调制的亚波长束斑半导体激光器.  , 2010, 59(7): 5105-5109. doi: 10.7498/aps.59.5105
    [17] 洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东. 数值模拟探针诱导表面等离子体共振耦合纳米光刻.  , 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [18] 余本海, 戴能利, 王 英, 李玉华, 季玲玲, 郑启光, 陆培祥. 飞秒激光烧蚀LiNbO3晶体的形貌特征与机理研究.  , 2007, 56(10): 5821-5826. doi: 10.7498/aps.56.5821
    [19] 郑俊娟, 孙 刚. 周期排列的电介质小球所诱发的金属-电介质表面上的表面等离子激元的光学性质.  , 2005, 54(11): 5210-5217. doi: 10.7498/aps.54.5210
    [20] 刘发民, 王天民, 张立德. 纳米GaSb-SiO2复合薄膜的非线性光学特性.  , 2002, 51(1): 183-186. doi: 10.7498/aps.51.183
计量
  • 文章访问数:  7456
  • PDF下载量:  385
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-19
  • 修回日期:  2017-07-05
  • 刊出日期:  2017-07-05

/

返回文章
返回
Baidu
map