搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嵌入电介质小球的金属薄片的电磁波透射特性

郑俊娟 孙刚

引用本文:
Citation:

嵌入电介质小球的金属薄片的电磁波透射特性

郑俊娟, 孙刚

Transmission properties of the system of dielectric spheres periodically mounted in a metal slab

Zheng Jun-Juan, Sun Gang
PDF
导出引用
  • 研究了金属板上下两个表面内侧都周期性地嵌入电介质小球体系的透射和吸收性质.结果显示:对于嵌入深度很小的电介质小球,电磁波可通过隧穿效应进入到电介质小球内,并以腔体本征模式的形式存在.当嵌入深度很小时,周期排列的电介质小球会对金属表面做有效的周期性调制,使体系在特定的频率出现金属表面等离子激元.当腔体本征模式与金属表面等离子激元模式的频率相近时,它们之间的耦合将使两种电磁模式大幅度地增强,从而使上层的电介质小球内具有非常强的电磁场.这些高强度的电磁场有相当一部分可通过隧穿效应进入到下层的电介质小球内,并通过
    Transmission properties of the system of dielectric spheres periodically mounted in a metal slab are investigated. The electromagnetic wave can enter the dielectric spheres by tunneling effect and exists as a cavity mode. The surface plasmon polaritons can occur at certain frequency because of the periodically mounted dielectric spheres, which effectively modulate the metal surface to a periodical structure. When the frequencies of the cavity mode and that of the surface plasmon polaritons are close to each other, the coupling between them can greatly enhance both the electromagnetic modes, which results in a very strong electric field in the dielectric spheres of the upper layer. This strong electric field can further enter partially the dielectric spheres at the lower layer by tunneling effect, and can propagate out of the metal slab by the similar mechanism at the upper side of the metal slab, which causes additional increment in the transmission.
    • 基金项目: 国家自然科学基金(批准号:10674157)和北京市教育委员会科技发展计划(批准号: KM200710012004)资助的课题.
    [1]

    [1]Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [2]

    [2]Ghaemi H F, Thio T, Grupp D E, Ebbesen T W, Lezec H J 1998 Phys. Rev. B 58 6779

    [3]

    [3]Kim T J, Thio T, Ebbesen T W, Grupp D E, Lezec H J 1999 Opt. Lett. 24 256

    [4]

    [4]Thio T, Ghaemi H F, Lezec H J, Wolff P A, Ebbesen T W 1999 J. Opt. Soc. Am. B 16 1743

    [5]

    [5]Grupp D E, Lezec H J, Ebbesen T W, Pellerin K M, Thio T 2000 Appl. Phys. Lett. 77 1569

    [6]

    [6]Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114

    [7]

    [7]Chen Y G, Wang Y H, Zhang Y, Liu S T 2007 Chin. Phys. Lett. 24 1084

    [8]

    [8]Meng K, Wang Y H, Chen L W, Zhang Y 2008 Acta Phys. Sin. 57 3198 (in Chinese) [孟阔、王艳花、陈龙旺、张岩 2008 57 3198]

    [9]

    [9]Sun M, Liu R J, Li Z Y, Cheng B Y, Zhang D Z, Yang H F, Jin A Z 2006 Chin. Phys.15 1591

    [10]

    ]Schrter U,Heitmann D 1998 Phys. Rev. B 58 15419

    [11]

    ]Schrter U,Heitmann D 1999 Phys. Rev. B 60 4992

    [12]

    ]Porto J A, Garcia-Vidal F J,Pendry J B 1999 Phys. Rev. Lett. 83 2845

    [13]

    ]Popov E, Neviere M, Enoch S,Reinisch R 2000 Phys. Rev. B 62 16100

    [14]

    ]Tan W C, Preist T W, Sambles R J 2000 Phys. Rev. B 62 11134

    [15]

    ]Salomon L, Grillot F, Zayats A V, de Fornel F 2001 Phys. Rev. Lett. 86 1110

    [16]

    ]Darmanyan S A, Zayats A V 2003 Phys. Rev. B 67 035424

    [17]

    ]Bonod N, Enoch S, Li P F, Popov E,Neviere M 2003 Opt. Express 11 482

    [18]

    ]Zheng J J, Sun G 2005 Acta Phys. Sin. 54 5210 (in Chinese) [郑俊娟、孙刚 2005 54 5210]

    [19]

    ]Sun G, Chan C T 2006 Phys. Rev. E 73 036613

    [20]

    ]Zheng J J, Sun G 2005 Acta Phys. Sin. 54 2751(in Chinese) [郑俊娟、孙刚 2005 54 2751]

    [21]

    ]Sun G, Zheng J J 2005 Acta Sci. Techn. Adv. Mater. 6 848

    [22]

    ]Palik E D 1985 Handbook of Optical Constants of Solids (New York: Academic Press)

    [23]

    ]Dykhne A M, Sarychev A K, Shalaev V M 2003 Phys. Rev. B 67 195402

    [24]

    ]Modinos A 1987 Physica A 141 575

    [25]

    ]Stefanou N, Yannopapas V,Modinos A 1998 Comput. Phys. Commun. 113 49

    [26]

    ]Stefanou N, Yannopapas V,Modinos A 2000 Comput. Phys. Commun. 132 189

  • [1]

    [1]Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [2]

    [2]Ghaemi H F, Thio T, Grupp D E, Ebbesen T W, Lezec H J 1998 Phys. Rev. B 58 6779

    [3]

    [3]Kim T J, Thio T, Ebbesen T W, Grupp D E, Lezec H J 1999 Opt. Lett. 24 256

    [4]

    [4]Thio T, Ghaemi H F, Lezec H J, Wolff P A, Ebbesen T W 1999 J. Opt. Soc. Am. B 16 1743

    [5]

    [5]Grupp D E, Lezec H J, Ebbesen T W, Pellerin K M, Thio T 2000 Appl. Phys. Lett. 77 1569

    [6]

    [6]Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114

    [7]

    [7]Chen Y G, Wang Y H, Zhang Y, Liu S T 2007 Chin. Phys. Lett. 24 1084

    [8]

    [8]Meng K, Wang Y H, Chen L W, Zhang Y 2008 Acta Phys. Sin. 57 3198 (in Chinese) [孟阔、王艳花、陈龙旺、张岩 2008 57 3198]

    [9]

    [9]Sun M, Liu R J, Li Z Y, Cheng B Y, Zhang D Z, Yang H F, Jin A Z 2006 Chin. Phys.15 1591

    [10]

    ]Schrter U,Heitmann D 1998 Phys. Rev. B 58 15419

    [11]

    ]Schrter U,Heitmann D 1999 Phys. Rev. B 60 4992

    [12]

    ]Porto J A, Garcia-Vidal F J,Pendry J B 1999 Phys. Rev. Lett. 83 2845

    [13]

    ]Popov E, Neviere M, Enoch S,Reinisch R 2000 Phys. Rev. B 62 16100

    [14]

    ]Tan W C, Preist T W, Sambles R J 2000 Phys. Rev. B 62 11134

    [15]

    ]Salomon L, Grillot F, Zayats A V, de Fornel F 2001 Phys. Rev. Lett. 86 1110

    [16]

    ]Darmanyan S A, Zayats A V 2003 Phys. Rev. B 67 035424

    [17]

    ]Bonod N, Enoch S, Li P F, Popov E,Neviere M 2003 Opt. Express 11 482

    [18]

    ]Zheng J J, Sun G 2005 Acta Phys. Sin. 54 5210 (in Chinese) [郑俊娟、孙刚 2005 54 5210]

    [19]

    ]Sun G, Chan C T 2006 Phys. Rev. E 73 036613

    [20]

    ]Zheng J J, Sun G 2005 Acta Phys. Sin. 54 2751(in Chinese) [郑俊娟、孙刚 2005 54 2751]

    [21]

    ]Sun G, Zheng J J 2005 Acta Sci. Techn. Adv. Mater. 6 848

    [22]

    ]Palik E D 1985 Handbook of Optical Constants of Solids (New York: Academic Press)

    [23]

    ]Dykhne A M, Sarychev A K, Shalaev V M 2003 Phys. Rev. B 67 195402

    [24]

    ]Modinos A 1987 Physica A 141 575

    [25]

    ]Stefanou N, Yannopapas V,Modinos A 1998 Comput. Phys. Commun. 113 49

    [26]

    ]Stefanou N, Yannopapas V,Modinos A 2000 Comput. Phys. Commun. 132 189

  • [1] 陈颖, 周健, 丁志欣, 张敏, 朱奇光. 亚波长介质光栅/MDM波导/周期性光子晶体中双重Fano共振的形成及演变规律分析.  , 2022, 71(3): 034202. doi: 10.7498/aps.71.20211491
    [2] 陈颖, 曹景刚, 谢进朝, 高新贝, 许扬眉, 李少华. 含双挡板金属-电介质-金属波导耦合方形腔的独立调谐双重Fano共振特性.  , 2019, 68(10): 107302. doi: 10.7498/aps.68.20181985
    [3] 耿逸飞, 王铸宁, 马耀光, 高飞. 拓扑表面等离激元.  , 2019, 68(22): 224101. doi: 10.7498/aps.68.20191085
    [4] 刘仿, 李云翔, 黄翊东. 基于双表面等离子激元吸收的纳米光刻.  , 2017, 66(14): 148101. doi: 10.7498/aps.66.148101
    [5] 杨傅子. 从plasmon到nanoplasmonics——近代光子学前沿及液晶在其动态调制中的应用.  , 2015, 64(12): 124214. doi: 10.7498/aps.64.124214
    [6] 王文鹏, 刘福生, 张宁超. 冲击加载下液态水的结构相变.  , 2014, 63(12): 126201. doi: 10.7498/aps.63.126201
    [7] 吴青峻, 吴凡, 孙理斌, 胡晓琳, 叶鸣, 徐越, 史斌, 谢昊, 夏娟, 蒋建中, 张冬仙. 基于表面等离子激元的超薄金属减色滤波器的研究.  , 2014, 63(20): 207801. doi: 10.7498/aps.63.207801
    [8] 周振婷, 杨理, 姚洁, 叶燃, 徐欢欢, 叶永红. 多层金属纳米点阵的制备及其光学性质的研究.  , 2013, 62(18): 188104. doi: 10.7498/aps.62.188104
    [9] 王五松, 张利伟, 冉佳, 张冶文. 微波频段表面等离子激元波导滤波器的实验研究.  , 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [10] 黄茜, 张德坤, 熊绍珍, 赵颖, 张晓丹. 降低表面等离子激元寄生吸收损失的途径研究.  , 2012, 61(21): 217301. doi: 10.7498/aps.61.217301
    [11] 佟建波, 黄茜, 张晓丹, 张存善, 赵颖. 纳米Ag颗粒表面等离子激元对上转换材料光致发光性能影响的研究.  , 2012, 61(4): 047801. doi: 10.7498/aps.61.047801
    [12] 黄茜, 熊绍珍, 赵颖, 张晓丹. 表面等离子激元非线性表面增强拉曼散射效应.  , 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [13] 宋国峰, 汪卫敏, 蔡利康, 郭宝山, 王青, 徐云, 韦欣, 刘运涛. 表面等离子激元调制的亚波长束斑半导体激光器.  , 2010, 59(7): 5105-5109. doi: 10.7498/aps.59.5105
    [14] 米 艳, 侯蓝田, 周桂耀, 王 康, 陈 超, 高 飞, 刘博文, 胡明列. 空芯光子晶体光纤光子带隙的测量与数值模拟.  , 2008, 57(6): 3583-3587. doi: 10.7498/aps.57.3583
    [15] 孟田华, 赵国忠, 张存林. 亚波长分形结构太赫兹透射增强的机理研究.  , 2008, 57(6): 3846-3852. doi: 10.7498/aps.57.3846
    [16] 刘炳灿, 潘学琴, 任志明. 非线性系数对超晶格透射的影响.  , 2006, 55(12): 6595-6599. doi: 10.7498/aps.55.6595
    [17] 刘敬伟, 陈少武, 余金中. 一种分析三维楔脊形光波导与光纤耦合的方法.  , 2005, 54(1): 6-11. doi: 10.7498/aps.54.6
    [18] 郑俊娟, 孙 刚. 周期地嵌入电介质球壳的金属表层的表面等离子激元及其与电介质腔体模式的耦合.  , 2005, 54(6): 2751-2757. doi: 10.7498/aps.54.2751
    [19] 郑俊娟, 孙 刚. 周期排列的电介质小球所诱发的金属-电介质表面上的表面等离子激元的光学性质.  , 2005, 54(11): 5210-5217. doi: 10.7498/aps.54.5210
    [20] 李中新, 金亚秋. 双网格前后向迭代与谱积分法计算分形粗糙面的双站散射与透射.  , 2002, 51(7): 1403-1411. doi: 10.7498/aps.51.1403
计量
  • 文章访问数:  8563
  • PDF下载量:  743
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-27
  • 修回日期:  2009-12-15
  • 刊出日期:  2010-03-05

/

返回文章
返回
Baidu
map