-
基于表面等离子激元在亚波长结构的传输特性, 设计了一种含双挡板金属-电介质-金属波导耦合两个方形腔的结构. 由F-P谐振腔产生的宽谱模式与两个方形谐振腔产生的两个窄谱模式发生干涉作用, 形成了独立调谐的双重Fano共振, 而且可以通过改变两个方形腔的大小及填充介质实现双重Fano共振的独立调谐. 基于耦合模理论, 定性分析了该结构产生双重Fano共振的机理. 利用有限元仿真的方法, 定量分析了结构参数对可独立调谐双重Fano共振和折射率传感特性的影响. 结果表明, 优化参数后该结构的灵敏度分别高达1020和1120 nm/RIU, FOM值分别高达3.59 × 105和1.17 × 106. 该结构可为超快光开关、多功能高灵敏度传感器和慢光器件的光学集成提供有效的理论参考.A metal-dielectric-metal (MDM) waveguide coupling two square cavities with double baffles is designed in this paper based on the transmission characteristics of surface plasmon polaritons in subwavelength structure. The independent tuning of the dual Fano resonance is implemented by the interference between the wide-spectrum mode generated by the F-P (Fabry Perot) cavity and the two narrow-spectrum modes generated by the two square cavities. Moreover, the independent tuning of the dual Fano resonance can be achieved by changing the sizes of the two square cavities and filling medium. The coupled-mode theory (CMT) is adopted to analyze the transmission characteristics of the dual Fano resonance. The structure is simulated by the finite element method to quantitatively analyze the influence of structural parameters on the independent tuning of the dual Fano resonance and the refractive index sensing characteristics. The proposed sensor yields respectively sensitivity higher than 1020 nm/RIU and 1120 nm/RIU and a figure of merit of 3.29 × 105 and 1.17 × 106 by optimizing the geometry parameters. This structure provides an effective theoretical reference in the optical integration of ultra-fast optical switches, multi-function high-sensitivity sensors and slow-light devices.
-
Keywords:
- surface plasmon polaritons /
- Fano resonance /
- square cavity /
- double baffle
[1] Yankovich A B, Verre R, Olsén E, Persson A E O, Trinh V, Dovner G, Käll M, Olsson E 2017 ACS Nano 11 4265Google Scholar
[2] Zeng C, Cui Y D 2013 Opt. Commun. 290 188Google Scholar
[3] Huang L L, Chen X Z, Bai B F, Tan Q F, Jin G F, Zentgraf Z, Zhang S 2013 Light-Sci. Appl. 2 e70Google Scholar
[4] Jankovic N, Cselyuszka N 2018 Sensors 18 1Google Scholar
[5] Yan Z D, Wen X M, Gu P, Zhong H, Zhan P, Chen Z, Wang Z L 2017 Nanotechnol. 28 475203Google Scholar
[6] Khatir M, Granpayeh N 2013 J. Lightwave Technol. 31 1045Google Scholar
[7] 陈颖, 罗佩, 田亚宁, 刘晓飞, 赵志勇, 朱奇光 2017 光学学报 37 0924002
Chen Y, Luo P, Tian Y N, Liu X F, Zhao Z Y, Zhu Q G 2017 Acta Opt. Sin. 37 0924002
[8] Fu H X, Li S L, Wang Y L, Song G, Zhang P F, Wang L L, Yu L 2018 IEEE Photonics J. 10 1
[9] Chen Z, Yu L 2014 IEEE Photonics J. 6 1
[10] Li C, Li S L, Wang Y L, Jiao R Z, Wang L L, Yu L 2017 IEEE Photonics J. 99 1
[11] Wang D Q, Yu X L, Yu Q M 2013 Appl. Phys. Lett. 103 824
[12] Artar A, Yanik A A 2011 Nano Lett. 11 3694Google Scholar
[13] Wu C H, Khanikaev A, Shvets G 2011 Phys. Rev. Lett. 106 107403Google Scholar
[14] Zhang Z D, Wang H Y, Zhang Z Y 2013 Plasmonics 8 797Google Scholar
[15] Rakhshani M R, Mansouri-Birjandi M A 2016 IEEE Sens. J. 16 3041Google Scholar
[16] Kim J, Soref R, Buchwald W R 2010 Opt. Express 18 17997Google Scholar
[17] Zheng S, Ruan Z S, Gao S Q, Long Y, Li S M, He M G, Zhou N, Du J, Shen L, Cai X L, Wang J 2017 Opt. Express 25 25655Google Scholar
[18] Guo Z C, Wen K H, Hu Q Y, Lai W H, Lin J Y, Fang Y H 2018 Sensors 18 1348Google Scholar
[19] Lu H, Liu X, Mao D 2012 Phys. Rev. A 85 53803Google Scholar
[20] Piao X J, Yu S, Koo S, Lee K 2011 Opt. Express 19 10907Google Scholar
[21] Wu C, Ding H F, Huang T Y, Wu X, Chen B W, Ren K X, Fu S N 2017 Plasmonics 13 251
[22] Wen K H, Hu Y H, Chen L, Zhou J Y, Liang L, Meng Z M 2016 Plasmonics 11 315Google Scholar
-
图 2 Hz场分布 (a) FR1波峰处的Hz场分布;(b) FR1波谷处的Hz场分布;(c) FR2波峰处的Hz场分布;(d) FR2波谷处的Hz场分布
Fig. 2. The Hz field distribution: (a) The Hz field distribution at the peak of FR1; (b) the Hz field distribution at the dip of FR1; (c) the Hz field distribution at the peak of FR2; (d) the Hz field distribution at the dip of FR2.
图 3 参数l1和l2对传感特性的影响 (a)参数l1对FR1的影响;(b)参数l2对FR2的影响;(c)参数l1 = l2或l1/l2对Fano共振线型的影响
Fig. 3. Influence of parameters l1 and l2 on sensing characteristics: (a) Influence of parameters l1 on the FR1; (b) influence of parameters l2 on the FR2; (c) influence of parameters l1 = l2 or l1/l2 on the Fano resonance.
图 4 参数L1对传感特性的影响 (a)参数L1对FR1的影响;(b)参数L1对FR1的FOM值的影响;(c)参数L1对FR2的影响;(b)参数L1对FR2的FOM值的影响
Fig. 4. Influence of parameters L1 on sensing characteristics: (a) Influence of parameters L1 on the FR1; (b) influence of parameters L1 on the FOM value of FR1; (c) influence of parameters L1 on the FR2; (d) influence of parameters L1 on the FOM value of FR2.
图 5 参数g1, g2和折射率n1, n2对传感特性的影响 (a)参数g1对FR1的影响;(b)参数g2对FR2的影响;(c)折射率n1对FR1的影响;(d)折射率n2对FR2的影响
Fig. 5. Influence of parameters g1, g2 and refractive index n1,n2 on sensing characteristics: (a) Influence of parameters g1 on the FR1; (b) influence of parameters g2 on the FR2; (c) influence of refractive index n1 on the FR1; (d) influence of refractive index n2 on the FR2.
-
[1] Yankovich A B, Verre R, Olsén E, Persson A E O, Trinh V, Dovner G, Käll M, Olsson E 2017 ACS Nano 11 4265Google Scholar
[2] Zeng C, Cui Y D 2013 Opt. Commun. 290 188Google Scholar
[3] Huang L L, Chen X Z, Bai B F, Tan Q F, Jin G F, Zentgraf Z, Zhang S 2013 Light-Sci. Appl. 2 e70Google Scholar
[4] Jankovic N, Cselyuszka N 2018 Sensors 18 1Google Scholar
[5] Yan Z D, Wen X M, Gu P, Zhong H, Zhan P, Chen Z, Wang Z L 2017 Nanotechnol. 28 475203Google Scholar
[6] Khatir M, Granpayeh N 2013 J. Lightwave Technol. 31 1045Google Scholar
[7] 陈颖, 罗佩, 田亚宁, 刘晓飞, 赵志勇, 朱奇光 2017 光学学报 37 0924002
Chen Y, Luo P, Tian Y N, Liu X F, Zhao Z Y, Zhu Q G 2017 Acta Opt. Sin. 37 0924002
[8] Fu H X, Li S L, Wang Y L, Song G, Zhang P F, Wang L L, Yu L 2018 IEEE Photonics J. 10 1
[9] Chen Z, Yu L 2014 IEEE Photonics J. 6 1
[10] Li C, Li S L, Wang Y L, Jiao R Z, Wang L L, Yu L 2017 IEEE Photonics J. 99 1
[11] Wang D Q, Yu X L, Yu Q M 2013 Appl. Phys. Lett. 103 824
[12] Artar A, Yanik A A 2011 Nano Lett. 11 3694Google Scholar
[13] Wu C H, Khanikaev A, Shvets G 2011 Phys. Rev. Lett. 106 107403Google Scholar
[14] Zhang Z D, Wang H Y, Zhang Z Y 2013 Plasmonics 8 797Google Scholar
[15] Rakhshani M R, Mansouri-Birjandi M A 2016 IEEE Sens. J. 16 3041Google Scholar
[16] Kim J, Soref R, Buchwald W R 2010 Opt. Express 18 17997Google Scholar
[17] Zheng S, Ruan Z S, Gao S Q, Long Y, Li S M, He M G, Zhou N, Du J, Shen L, Cai X L, Wang J 2017 Opt. Express 25 25655Google Scholar
[18] Guo Z C, Wen K H, Hu Q Y, Lai W H, Lin J Y, Fang Y H 2018 Sensors 18 1348Google Scholar
[19] Lu H, Liu X, Mao D 2012 Phys. Rev. A 85 53803Google Scholar
[20] Piao X J, Yu S, Koo S, Lee K 2011 Opt. Express 19 10907Google Scholar
[21] Wu C, Ding H F, Huang T Y, Wu X, Chen B W, Ren K X, Fu S N 2017 Plasmonics 13 251
[22] Wen K H, Hu Y H, Chen L, Zhou J Y, Liang L, Meng Z M 2016 Plasmonics 11 315Google Scholar
计量
- 文章访问数: 7511
- PDF下载量: 82
- 被引次数: 0