搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通过插层Cu实现SnSe2的高效热电性能

李彩云 何文科 王东洋 张潇 赵立东

引用本文:
Citation:

通过插层Cu实现SnSe2的高效热电性能

李彩云, 何文科, 王东洋, 张潇, 赵立东

Realizing high thermoelectric performance in SnSe2 via intercalating Cu

Li Cai-Yun, He Wen-Ke, Wang Dong-Yang, Zhang Xiao, Zhao Li-Dong
PDF
HTML
导出引用
  • 具有层状结构的SnSe展现出非常优异的热电性能. SnSe2与其具有相似结构, 但较低的电传输性能导致SnSe2热电性能表现不佳, 本征SnSe2在773 K下最大ZT值仅约 0.09. 本文在Br掺杂提升SnSe2载流子浓度的基础上, 通过熔融法结合放电等离子烧结(SPS)技术合成了一系列成分为SnSe1.98Br0.02y%Cu (y = 0, 0.50, 0.75, 1.00)的块体材料, 研究了在具有层间范德瓦耳斯力结合的SnSe2材料中引入额外的Cu对其电传输性能的协同优化作用: 一方面, 引入的Cu不仅能提供额外的电子, 而且能稳定存在于范德瓦耳斯层间隙并形成插层结构, 促进层间和层内的电荷传输, 从而实现载流子浓度和迁移率的协同优化; 另一方面, Cu的动态掺杂特性, 使得高温下载流子浓度的增加弥补了因散射作用导致的迁移率的降低, 促使样品在高温下仍然保持高电传输特性. 研究结果表明, 在300 K下, SnSe2沿平行和垂直于SPS烧结方向(//P, ⊥P)的功率因子(PF)分别从本征的约0.65和0.98 µW·cm–1·K–2提高到SnSe1.98Br0.02–0.75%Cu的约10 和19 µW·cm–1·K–2. 最终, 在773 K下, 沿⊥P方向的最大ZT值达到约 0.8. 此研究表明SnSe2是一种很具发展潜力的热电材料.
    SnSe, a layered material with intrinsic low thermal conductivity, is reported to have excellent thermoelectric properties. SnSe2 has a similar structure to SnSe, but the SnSe2 has a low electrical transport, resulting in a poor thermoelectric performance, and the intrinsic SnSe2 has a maximum ZT value of only ~ 0.09 at 773 K. In this work, SnSe1.98Br0.02-y%Cu (y = 0, 0.50, 0.75, 1.0) bulk materials are synthesized by the melting method combined with spark plasma sintering (SPS) based on the carrier concentration improved through Br doping. In the SnSe2 materials with van der Waals chemical bonding between layers, the synergistic effects of intercalating Cu on the thermoelectric properties are investigated. On the one hand, the extra Cu not only provides additional electrons but also can be embedded stably in the van der Waals gap and form an intercalated structure, which is beneficial to the charge transfer in or out of the layers, and thus synergistically improving the carrier concentration and carrier mobility. On the other hand, owing to the dynamic Cu doping, the increase of carrier concentration compensates for the decrease of carrier mobility caused by carrier-carrier scattering, which maintains the high electrical transport properties at high temperature. The present results show that at room temperature, the power factors along the parallel and perpendicular to the SPS (//P and ⊥P) sintering directions increase from ~0.65 and ~0.98 µW·cm–1·K–2 for intrinsic SnSe2 to ~10 and ~19 μW·cm–1·K–2 for SnSe1.98Br0.02-0.75%Cu samples, respectively. Finally, at 773 K, the maximum ZT value of ~0.8 is achieved along the ⊥P direction. This study proves that the SnSe2 greatly promises to become an excellent thermoelectric material.
      通信作者: 张潇, zhang_xiao@buaa.edu.cn ; 赵立东, zhaolidong@buaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51772012, 52002042, 52002011)、国家重点研发计划(批准号: 2018YFA0702100, 2018YFB0703600)、北京市自然科学基金(批准号: JQ18004)、高等学校学科创新引智计划(批准号: B17002)、中国博士后创新人才支持计划(批准号: BX20200028)、中国博士后科学基金(批准号: 2021M690280)、重庆市自然科学基金(批准号: cstc2019jcyj-msxmX0554)、北京航空航天大学高算平台(HPC)和国家杰出青年科学基金(批准号: 51925101)资助的课题.
      Corresponding author: Zhang Xiao, zhang_xiao@buaa.edu.cn ; Zhao Li-Dong, zhaolidong@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772012, 52002042, 52002011), the National Key R&D Program of China (Grant Nos. 2018YFA0702100, 2018YFB0703600), the Natural Science Foundation of Beijing, China (Grant No. JQ18004), the 111Project (Grant No. B17002), the National Postdoctoral Program for Innovative Talents of China (Grant No. BX20200028), the China Postdoctoral Science Foundation (Grant No. 2021M690280), the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyj-msxmX0554), the High-Performance Computing (HPC) Resources at Beihang University, China, and the National Science Fund for Distinguished Young Scholars of China (Grant No. 51925101).
    [1]

    Zhang X, Zhao L D 2015 J. Materiomics 1 92Google Scholar

    [2]

    Li J F, Liu W S, Zhao L D, Zhou M 2010 NPG Asia Mater. 2 152Google Scholar

    [3]

    赵立东, 张德培, 赵勇 2015 西华大学学报 (自然科学版) 34 1Google Scholar

    Zhao L D, Zhang D P, Zhao Y 2015 J. Xihua Univ. (Nat. Sci. Ed. ) 34 1Google Scholar

    [4]

    Xiao Y, Zhao L D 2020 Science 367 1196Google Scholar

    [5]

    蒋俊, 许高杰, 崔平, 陈立东 2005 55 4849Google Scholar

    Jiang J, Xu G J, Cui P, Chen L D 2005 Acta Phys. Sin. 55 4849Google Scholar

    [6]

    郑丽仙, 胡剑峰, 骆军 2020 69 247102Google Scholar

    Zheng L X, Hu J F, Luo J 2020 Acta Phys. Sin. 69 247102Google Scholar

    [7]

    赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆 2021 70 128401Google Scholar

    Zhao Y H, Zhang R, Zhang B P, Yin Y, Wang M J, Liang D D 2021 Acta Phys. Sin. 70 128401Google Scholar

    [8]

    Xiao Y, Wang D Y, Zhang Y, Chen C G, Zhang S X, Wang K D, Wang G T, Pennycook S J, Snyder G J, Wu H J, Zhao L D 2020 J. Am. Chem. Soc 142 4051Google Scholar

    [9]

    He W K, Wang D Y, Jun W H, et al. 2019 Science 365 1418Google Scholar

    [10]

    Zhao L D, Chang C, Tan G J, Kanatzidis M G 2016 Energy Environ. Sci. 9 3044Google Scholar

    [11]

    Tan G J, Zhao L D, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar

    [12]

    Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar

    [13]

    Chang C, Wu M H, He D S, Pei Y L, Wu C F, Wu X F, Yu H L, Zhu F Y, Wang K D, Chen Y, Huang L, Li J F, He J Q, Zhao L D 2018 Science 360(SI) 778

    [14]

    Qin B C, Wang D Y, Liu X X, Qin Y X, Dong J F, Luo J F, Li J W, Liu W, Tan G J, Tang X F, Li J F, He J, Zhao L D 2021 Science 373 556Google Scholar

    [15]

    Sun J, Liu S, Wang C, Bai Y, Chen G, Luo Q, Ma F 2020 Appl. Surf. Sci. 510 145478Google Scholar

    [16]

    Wang H F, Gao Y, Liu G 2017 RSC Adv. 7 8098Google Scholar

    [17]

    Pham A T, Vu T H, Chang C, Trinh T L, Lee J E, Ryu H, Hwang C, Mo S K, Kim J, Zhao L D, Duong A T, Cho S 2020 ACS Appl. Energy Mater. 3 10787Google Scholar

    [18]

    Shu Y J, Su X L, Xie H Y, Zheng G, Liu W, Yan Y G, Luo T T, Yang X, Wang D Y, Uher C, Tang X F 2018 ACS Appl. Mater. Interfaces 10 15793Google Scholar

    [19]

    Liu C Y, Huang Z W, Wang D H, Wang X X, Miao L, Wang X Y, Wu S H, Toyama N, Asaka T, Chen J L, Nishibori E, Zhao L D 2019 J. Mater. Chem. A 7 9761Google Scholar

    [20]

    Xu P P, Fu T Z, Xin J Z, Liu Y T, Ying P T, Zhao X B, Pan H G, Zhu T J 2017 Sci. Bull. 62 1663Google Scholar

    [21]

    Luo Y B, Zheng Y, Luo Z Z, Hao S Q, Du C F, Liang Q H, Li Z, Khor K A, Hippalgaonkar K, Xu J W, Yan Q Y, Wolverton C, Kanatzidis M G 2018 Adv. Energy Mater. 8 1702167Google Scholar

    [22]

    施先珍 2014 硕士学位论文 (武汉: 武汉理工大学)

    Shi X Z 2014 M. S. Thesis (Wuhan: Wuhan University of Technology) (in Chinese)

    [23]

    Sun G L, Qin X Y, Li D, Zhang J, Ren B J, Zou T H, Xin H X, Paschen S B, Yan X L 2015 J. Alloys Compd. 639 9Google Scholar

    [24]

    Xiao Y, Wu H J, Li W, Yin M J, Pei Y L, Zhang Y, Fu L W, Chen Y X, Pennycook S J, Huang L, He J Q, Zhao L D 2017 J. Am. Chem. Soc 139 18732Google Scholar

    [25]

    Qin B C, Wang D Y, He W K, Zhang Y, Wu H J, Pennycook S J, Zhao L D 2018 J. Am. Chem. Soc 141 1141Google Scholar

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [27]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [28]

    John P P, Kieron B, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Zhou C, Yu Y, Zhang X, Cheng Y, Xu J, Lee Y K, Yoo B, Cojocaru‐Mirédin O, Liu G, Cho S P, Wuttig M, Hyeon T, Chung In 2019 Adv. Funct. Mater. 30 1908405Google Scholar

    [30]

    Savin A, Jepsen O, Flad J, Andersen O K, Preuss H, von Schnering H G 1992 Angew. Chem. Int. Ed. 31 187Google Scholar

    [31]

    Sun B Z, Ma Z J, He C, Wu K C 2015 Phys. Chem. Chem. Phys. 17 29844Google Scholar

    [32]

    Qian X, Wang D Y, Zhang Y, Wu H J, Pennycook S J, Zheng L, Poudeu P F P, Zhao L D 2020 J. Mater. Chem. A 8 5699Google Scholar

    [33]

    Li C Y, He W K, Wang D Y, Zhao L D 2021 Chin. Phys. B 30 067101Google Scholar

    [34]

    Yamamoto M, Ohta H, Koumoto K 2007 Appl. Phys. Lett. 90 072101Google Scholar

    [35]

    Zhao L D, Zhang B P, Liu W S, Zhang H L, Li J F 2008 J. Solid State Chem. 181 3278Google Scholar

    [36]

    Pei Y L, He J Q, Li J F, Li F, Liu Q J, Pan W, Barreteau C, Berardan D, Dragoe N, Zhao L D 2013 NPG Asia Mater. 5 e47Google Scholar

    [37]

    Ge Z H, Song D, Chong X, Zheng F, Jin L, Qian X, Zheng L, Dunin-Borkowski R E, Qin P, Feng J, Zhao L D 2017 J. Am. Chem. Soc 139 9714Google Scholar

  • 图 1  SnSe1.98Br0.02-y%Cu (y = 0, 0.50, 0.75, 1.00)的 (a) 室温XRD和(b) 晶格常数

    Fig. 1.  (a) XRD patterns and (b) lattice parameters for SnSe1.98Br0.02-y%Cu (y = 0, 0.50, 0.75, 1.00).

    图 2  SnSe1.98Br0.02-y%Cu沿//P和⊥P方向 (a), (b) 电导率; (c), (d) Seebeck系数; (e), (f) 功率因子

    Fig. 2.  (a), (b) Electrical conductivity, (c), (d) Seebeck coefficient and (e), (f) power factor for the samples of SnSe1.98Br0.02-y%Cu samples along the //P and ⊥P directions.

    图 3  (a) SnSe1.98Br0.02-y%Cu样品沿//P和⊥P方向的载流子浓度和载流子迁移率; (b) SnSe2–xBrx和SnSe1.98Br0.02-y%Cu的Seebeck系数随载流子浓度的变化; SnSe1.98Br0.02 [29]和SnSe1.98Br0.02-0.75%Cu样品的(c)载流子浓度和(d)载流子迁移率随温度的变化

    Fig. 3.  (a) Carrier concentration and carrier mobility at room temperature for the samples of SnSe1.98Br0.02-y%Cu along the //P and ⊥P directions; (b) Seebeck coefficient as function of carrier concentration; (c) carrier concentration and (d) carrier mobility as function of temperature for SnSe1.98Br0.02[29] and SnSe1.98Br0.02-0.75%Cu samples.

    图 4  (a) Sn18CuSe36沿c轴方向投影的电子局域函数(ELF); (b) Sn18CuSe36的差分电荷密度

    Fig. 4.  (a) Electron localization function (ELF) projected along the c-axis and (b) differential charge density of Sn18CuSe36.

    图 5  SnSe1.98Br0.02-y%Cu沿//P和⊥P的总热导率((a), (b))和晶格热导率((c), (d))

    Fig. 5.  The temperature dependence of thermal conductivity along the //P and⊥P directions for SnSe1.98Br0.02-y%Cu: (a), (b) Total thermal conductivity; (c), (d) lattice thermal conductivity.

    图 6  SnSe1.98Br0.02-y%Cu的随温度变化的ZT值沿(a) //P方向和(b) ⊥P方向

    Fig. 6.  Temperature dependent ZT values along the (a) //P and (b) ⊥P directions for SnSe1.98Br0.02-y%Cu samples.

    Baidu
  • [1]

    Zhang X, Zhao L D 2015 J. Materiomics 1 92Google Scholar

    [2]

    Li J F, Liu W S, Zhao L D, Zhou M 2010 NPG Asia Mater. 2 152Google Scholar

    [3]

    赵立东, 张德培, 赵勇 2015 西华大学学报 (自然科学版) 34 1Google Scholar

    Zhao L D, Zhang D P, Zhao Y 2015 J. Xihua Univ. (Nat. Sci. Ed. ) 34 1Google Scholar

    [4]

    Xiao Y, Zhao L D 2020 Science 367 1196Google Scholar

    [5]

    蒋俊, 许高杰, 崔平, 陈立东 2005 55 4849Google Scholar

    Jiang J, Xu G J, Cui P, Chen L D 2005 Acta Phys. Sin. 55 4849Google Scholar

    [6]

    郑丽仙, 胡剑峰, 骆军 2020 69 247102Google Scholar

    Zheng L X, Hu J F, Luo J 2020 Acta Phys. Sin. 69 247102Google Scholar

    [7]

    赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆 2021 70 128401Google Scholar

    Zhao Y H, Zhang R, Zhang B P, Yin Y, Wang M J, Liang D D 2021 Acta Phys. Sin. 70 128401Google Scholar

    [8]

    Xiao Y, Wang D Y, Zhang Y, Chen C G, Zhang S X, Wang K D, Wang G T, Pennycook S J, Snyder G J, Wu H J, Zhao L D 2020 J. Am. Chem. Soc 142 4051Google Scholar

    [9]

    He W K, Wang D Y, Jun W H, et al. 2019 Science 365 1418Google Scholar

    [10]

    Zhao L D, Chang C, Tan G J, Kanatzidis M G 2016 Energy Environ. Sci. 9 3044Google Scholar

    [11]

    Tan G J, Zhao L D, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar

    [12]

    Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar

    [13]

    Chang C, Wu M H, He D S, Pei Y L, Wu C F, Wu X F, Yu H L, Zhu F Y, Wang K D, Chen Y, Huang L, Li J F, He J Q, Zhao L D 2018 Science 360(SI) 778

    [14]

    Qin B C, Wang D Y, Liu X X, Qin Y X, Dong J F, Luo J F, Li J W, Liu W, Tan G J, Tang X F, Li J F, He J, Zhao L D 2021 Science 373 556Google Scholar

    [15]

    Sun J, Liu S, Wang C, Bai Y, Chen G, Luo Q, Ma F 2020 Appl. Surf. Sci. 510 145478Google Scholar

    [16]

    Wang H F, Gao Y, Liu G 2017 RSC Adv. 7 8098Google Scholar

    [17]

    Pham A T, Vu T H, Chang C, Trinh T L, Lee J E, Ryu H, Hwang C, Mo S K, Kim J, Zhao L D, Duong A T, Cho S 2020 ACS Appl. Energy Mater. 3 10787Google Scholar

    [18]

    Shu Y J, Su X L, Xie H Y, Zheng G, Liu W, Yan Y G, Luo T T, Yang X, Wang D Y, Uher C, Tang X F 2018 ACS Appl. Mater. Interfaces 10 15793Google Scholar

    [19]

    Liu C Y, Huang Z W, Wang D H, Wang X X, Miao L, Wang X Y, Wu S H, Toyama N, Asaka T, Chen J L, Nishibori E, Zhao L D 2019 J. Mater. Chem. A 7 9761Google Scholar

    [20]

    Xu P P, Fu T Z, Xin J Z, Liu Y T, Ying P T, Zhao X B, Pan H G, Zhu T J 2017 Sci. Bull. 62 1663Google Scholar

    [21]

    Luo Y B, Zheng Y, Luo Z Z, Hao S Q, Du C F, Liang Q H, Li Z, Khor K A, Hippalgaonkar K, Xu J W, Yan Q Y, Wolverton C, Kanatzidis M G 2018 Adv. Energy Mater. 8 1702167Google Scholar

    [22]

    施先珍 2014 硕士学位论文 (武汉: 武汉理工大学)

    Shi X Z 2014 M. S. Thesis (Wuhan: Wuhan University of Technology) (in Chinese)

    [23]

    Sun G L, Qin X Y, Li D, Zhang J, Ren B J, Zou T H, Xin H X, Paschen S B, Yan X L 2015 J. Alloys Compd. 639 9Google Scholar

    [24]

    Xiao Y, Wu H J, Li W, Yin M J, Pei Y L, Zhang Y, Fu L W, Chen Y X, Pennycook S J, Huang L, He J Q, Zhao L D 2017 J. Am. Chem. Soc 139 18732Google Scholar

    [25]

    Qin B C, Wang D Y, He W K, Zhang Y, Wu H J, Pennycook S J, Zhao L D 2018 J. Am. Chem. Soc 141 1141Google Scholar

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [27]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [28]

    John P P, Kieron B, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Zhou C, Yu Y, Zhang X, Cheng Y, Xu J, Lee Y K, Yoo B, Cojocaru‐Mirédin O, Liu G, Cho S P, Wuttig M, Hyeon T, Chung In 2019 Adv. Funct. Mater. 30 1908405Google Scholar

    [30]

    Savin A, Jepsen O, Flad J, Andersen O K, Preuss H, von Schnering H G 1992 Angew. Chem. Int. Ed. 31 187Google Scholar

    [31]

    Sun B Z, Ma Z J, He C, Wu K C 2015 Phys. Chem. Chem. Phys. 17 29844Google Scholar

    [32]

    Qian X, Wang D Y, Zhang Y, Wu H J, Pennycook S J, Zheng L, Poudeu P F P, Zhao L D 2020 J. Mater. Chem. A 8 5699Google Scholar

    [33]

    Li C Y, He W K, Wang D Y, Zhao L D 2021 Chin. Phys. B 30 067101Google Scholar

    [34]

    Yamamoto M, Ohta H, Koumoto K 2007 Appl. Phys. Lett. 90 072101Google Scholar

    [35]

    Zhao L D, Zhang B P, Liu W S, Zhang H L, Li J F 2008 J. Solid State Chem. 181 3278Google Scholar

    [36]

    Pei Y L, He J Q, Li J F, Li F, Liu Q J, Pan W, Barreteau C, Berardan D, Dragoe N, Zhao L D 2013 NPG Asia Mater. 5 e47Google Scholar

    [37]

    Ge Z H, Song D, Chong X, Zheng F, Jin L, Qian X, Zheng L, Dunin-Borkowski R E, Qin P, Feng J, Zhao L D 2017 J. Am. Chem. Soc 139 9714Google Scholar

  • [1] 李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯利萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰. n型Bi2Te3基化合物的类施主效应和热电性能.  , 2023, 72(9): 097101. doi: 10.7498/aps.72.20230231
    [2] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面.  , 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [3] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能.  , 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [4] 王莫凡, 应鹏展, 李勰, 崔教林. 多组元掺杂提升Cu3SbSe4基固溶体的热电性能.  , 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [5] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能.  , 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [6] 欧阳昊, 胡思扬, 申曼玲, 张晨希, 程湘爱, 江天. GeSe2中强各向异性偏振相关的非线性光学响应.  , 2020, 69(18): 184212. doi: 10.7498/aps.69.20200443
    [7] 郑丽仙, 胡剑峰, 骆军. 铜掺杂Cu2SnSe4的热电输运性能.  , 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [8] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇. Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比.  , 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [9] 陈萝娜, 刘叶烽, 张继业, 杨炯, 邢娟娟, 骆军, 张文清. Ga掺杂对Cu3SbSe4热电性能的影响.  , 2017, 66(16): 167201. doi: 10.7498/aps.66.167201
    [10] 孙政, 陈少平, 杨江锋, 孟庆森, 崔教林. 非等电子Sb替换Cu和Te后黄铜矿结构半导体Cu3Ga5Te9的热电性能.  , 2014, 63(5): 057201. doi: 10.7498/aps.63.057201
    [11] 吴子华, 谢华清. 聚对苯撑/LiNi0.5Fe2O4纳米复合热电材料的制备及其性能研究.  , 2012, 61(7): 076502. doi: 10.7498/aps.61.076502
    [12] 张永伟, 殷春浩, 赵强, 李富强, 朱姗姗, 刘海顺. TiO2电子结构与其双折射性、各向异性关联的理论研究.  , 2012, 61(2): 027801. doi: 10.7498/aps.61.027801
    [13] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能.  , 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [14] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能.  , 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [15] 杜保立, 徐静静, 鄢永高, 唐新峰. 非化学计量比AgSbTe2+x化合物制备及热电性能.  , 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [16] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能.  , 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [17] 万勇, 韩文娟, 刘均海, 夏临华, Xavier Mateos, Valentin Petrov, 张怀金, 王继扬. 单斜结构的Yb:KLu(WO4)2晶体光谱和激光性质的各向异性.  , 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [18] 史力斌, 任骏原, 张凤云, 张国华, 余增强. 关于MgB2/Al2O3超导薄膜电阻转变和各向异性的研究.  , 2007, 56(9): 5353-5358. doi: 10.7498/aps.56.5353
    [19] 穆全全, 刘永军, 胡立发, 李大禹, 曹召良, 宣 丽. 光谱型椭偏仪对各向异性液晶层的测量.  , 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
    [20] 李安华, 董生智, 李卫. 烧结Sm2Co17型永磁材料的力学性能及断裂行为的各向异性.  , 2002, 51(10): 2320-2324. doi: 10.7498/aps.51.2320
计量
  • 文章访问数:  5720
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-05
  • 修回日期:  2021-08-25
  • 上网日期:  2021-09-07
  • 刊出日期:  2021-10-20

/

返回文章
返回
Baidu
map