搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mie谐振耦合的亚波长金属孔宽带高透射传输

吕晓龙 陆浩然 郭云胜

引用本文:
Citation:

Mie谐振耦合的亚波长金属孔宽带高透射传输

吕晓龙, 陆浩然, 郭云胜

Broadband and high transmission of Mie-resonance-coupled subwavelength metal aperture

Lü Xiao-Long, Lu Hao-Ran, Guo Yun-Sheng
PDF
HTML
导出引用
  • 表面等离激元共振激发的亚波长金属孔透射较Bethe理论有大幅度的提高, 然而, 由于共振对频率的敏感性以及金属在光频的高损耗特性, 表面等离激元共振难以实现亚波长金属孔的宽带高透射传输. 本文采用放置在金属孔两边的硅纳米颗粒的Mie谐振耦合取代表面等离激元共振, 实现亚波长金属孔的宽带高透射传输. 全波仿真结果表明, 采用Mie谐振耦合的亚波长金属孔(r/λ = 0.1)光传输, 透射系数超过90%的带宽达到65 nm, 与表面等离激元共振诱导的透射增强相比, 峰值增高了1.5倍, 3 dB带宽拓宽了17倍. 根据耦合模理论, 建立了Mie谐振耦合亚波长金属孔透射的等效电路模型, 并在临界耦合状态下反演出电路模型中的元件参数值. 进一步研究发现, 仅通过改变等效电路模型中的耦合系数, 就可全面揭示Mie谐振耦合亚波长金属孔透射的传输规律, 并得到与全波电磁仿真完全一致的结果, 从而找到光与放置硅纳米颗粒的亚波长金属孔相互作用的数学表达, 也给予人们在光学领域按照电路设计方法构建相应功能模块的启示.
    Transmission of the subwavelength metal aperture excited by the surface plasmon resonance is much higher than that from the Bethe theory. However, due to the sensitivity of resonant frequency and the loss of metal in optical band, it is difficult to achieve broadband and high transmission of the subwavelength metal aperture through surface plasmon resonance. In this article, the broadband and high transmission of the subwavelength metal aperture is realized when Mie-resonant-coupled silicon nanoparticles placed on both sides of the metal aperture are used to replace the surface plasmon resonance. The full wave simulation results show that bandwidth of the transmission coefficient more than 90% of the subwavelength aperture ($ {r \mathord{\left/ {\vphantom {r {\lambda = 0.1}}} \right. } {\lambda = 0.1}}$) reaches 65 nm by using Mie-resonance-coupled silicon nanoparticles. Compared with the transmission induced by surface plasmon resonance, the peak value is improved by 1.5 times and the 3 dB bandwidth is widened by 17 times. According to the coupled mode theory, the equivalent circuit model of transmission of the subwavelength metal aperture added with Mie-resonance-coupled silicon nanoparticles is established, and the element parameters in the circuit model are inversed under the critical coupling state. Further research shows that transmission rule of the subwavelength metal aperture added with Mie-resonance coupled silicon nanoparticles can be accurately revealed by changing the coupling coefficient in the equivalent circuit model, and the results are consistent with the full wave electromagnetic simulation results. The mathematical expression of the interaction between light and Mie-resonance-coupled subwavelength metal aperture is found, therefore it can inspire us to construct certain functional modules in optical field according to circuit design method.
      通信作者: 郭云胜, gys03018@imust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61675103, 51862027)和内蒙古自治区自然科学基金(批准号:2018JQ03)资助的课题
      Corresponding author: Guo Yun-Sheng, gys03018@imust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675103, 51862027) and the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2018JQ03)
    [1]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T 1998 Nature 391 667Google Scholar

    [2]

    Garcia-Vidal F J, Martin-Moreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729Google Scholar

    [3]

    姚尧, 沈悦, 郝加明, 戴宁 2019 68 147802Google Scholar

    Yao Y, Shen Y, Hao J M, Dai N 2019 Acta Phys. Sin. 68 147802Google Scholar

    [4]

    Barnes W L, Murray W A, Dintinger J, Devaux E, Ebbesen T W 2004 Phys. Rev. Lett. 92 107401Google Scholar

    [5]

    郑俊娟, 孙刚 2010 59 4008Google Scholar

    Zheng J J, Sun G 2010 Acta Phys. Sin. 59 4008Google Scholar

    [6]

    易永祥, 汪国平, 龙拥兵, 单红 2003 52 604Google Scholar

    Yi Y X, Wang G P, Long Y B, Shan H 2003 Acta Phys. Sin. 52 604Google Scholar

    [7]

    朱旭鹏, 张轼, 石惠民, 陈智全, 全军, 薛书文, 张军, 段辉高 2019 68 247301Google Scholar

    Zhu X P, Zhang S, Shi H M, Chen Z Q, Quan J, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 247301Google Scholar

    [8]

    周强, 林树培, 张朴, 陈学文 2019 68 147104Google Scholar

    Zhou Q, Lin S P, Zhang P, Chen X W 2019 Acta Phys. Sin. 68 147104Google Scholar

    [9]

    Peer A, Biswas R 2016 Nanoscale 8 4657Google Scholar

    [10]

    Xiao B, Pradhan S K, Santiago K C, Rutherford G N, Pradhan A K 2015 Sci. Rep. 5 10393Google Scholar

    [11]

    Guo Y S, Liu S Y, Bi K, Lei M, Zhou J 2018 Photonics Res. 6 1102Google Scholar

    [12]

    Guo Y S, Liang H, Hou X J, Lv X L, Li L F, Li J S, Bi K, Lei M, Zhou J 2016 Appl. Phys. Lett. 108 051906Google Scholar

    [13]

    Guo Y S, Zhou J 2015 Sci. Rep. 5 8144Google Scholar

    [14]

    Guo Y S, Zhou J 2014 Opt. Express 22 27136Google Scholar

    [15]

    Guo Y S, Zhou J, Lan C W, Wu H Y, Bi K 2014 Appl. Phys. Lett. 104 204103Google Scholar

    [16]

    Chong K E, Staude I, James A, Dominguez J, Liu S, Campione S, Subramania G S, Luk T S, Decker M, Neshev D N, Brener I, Kivshar Y S 2015 Nano Lett. 15 5369Google Scholar

    [17]

    Yang Y, Kravchenko I I, Briggs D P, Valentine J 2014 Nat. Commun. 5 5753Google Scholar

    [18]

    杨玖龙, 元晴晨, 陈润丰, 方汉林, 肖发俊, 李俊韬, 姜碧强, 赵建林, 甘雪涛 2019 68 214207Google Scholar

    Yang J L, Yuan Q C, Chen R F, Fang H L, Xiao F J, Li J T, Jiang B Q, Zhao J L, Gan X T 2019 Acta Phys. Sin. 68 214207Google Scholar

    [19]

    Shcherbakov M R, Neshev D N, Hopkins B, Shorokhov A S, Staude I, Melik-Gaykazyan E V, Decker M, Ezhov A A, Miroshnichenko A E, Brener I, Fedyanin A A, Kivshar Y S 2014 Nano Lett. 14 6488Google Scholar

    [20]

    Zywietz U, Schmidt M K, Evlyukhin A B, Reinhardt C, Aizpurua J, Chichkov B N 2015 ACS Photonics 2 913Google Scholar

    [21]

    Groep J V D, Coenen T, Mann S A, Polman A 2016 Optica 3 93Google Scholar

    [22]

    Zeng Y, Hoyer W, Liu J, Koch S W, Moloney J V 2009 Phys. Rev. B 79 235109Google Scholar

    [23]

    Haus H A 1984 Waves and Fields in Optoelectronics (Englewood Cliffs: Prentice-Hall Inc.) pp211−212

  • 图 1  亚波长金属孔的(a)单元结构、(b)电场分布以及(c)功率损耗密度分布

    Fig. 1.  Unit cell (a), electric field distribution (b), and power loss density distribution (c) of the subwavelength metal aperture.

    图 2  平面波通过亚波长金属孔的(a)透射率、(b)反射率和(c)吸收率

    Fig. 2.  (a) Transmissivity, (b) reflectivity and (c) absorptivity of plane waves passing through the subwavelength metal aperture.

    图 3  放置在亚波长金属孔两边的硅立方谐振子的(a)正视图和(b)侧视图

    Fig. 3.  (a) Front view and (b) side view of silicon cube resonators placed at both sides of the subwavelength metal aperture.

    图 4  亚波长金属孔的(a)透射率和(b)吸收率随两个硅谐振子之间耦合距离的变化

    Fig. 4.  (a) Transmissivity and (b) absorptivity of the subwavelength metal aperture varying with the coupling distance between two silicon resonators.

    图 5  Mie谐振耦合的亚波长金属孔的透射率随(a)硅纳米颗粒边长和(b)金属孔周期的变化

    Fig. 5.  Transmissivity of Mie-resonance coupled subwavelength metal aperture varying with (a) side length of silicon nanoparticles and (b) period of metal aperture.

    图 6  加载耦合谐振子的亚波长金属孔透射的等效电路模型

    Fig. 6.  Equivalent circuit model of transmission of the subwavelength metal aperture added with coupled resonators

    图 7  加载耦合谐振子的亚波长金属孔透射的等效电路拟合

    Fig. 7.  Equivalent circuit fitting of transmission of the subwavelength metal aperture added with coupled resonators.

    图 8  透射率随(a)耦合距离的归一化和(b)耦合系数的倒数的归一化的变化

    Fig. 8.  Transmissivity varying with (a) normalization of coupling distance and (b) normalization of reciprocal of coupling coefficient.

    Baidu
  • [1]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T 1998 Nature 391 667Google Scholar

    [2]

    Garcia-Vidal F J, Martin-Moreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729Google Scholar

    [3]

    姚尧, 沈悦, 郝加明, 戴宁 2019 68 147802Google Scholar

    Yao Y, Shen Y, Hao J M, Dai N 2019 Acta Phys. Sin. 68 147802Google Scholar

    [4]

    Barnes W L, Murray W A, Dintinger J, Devaux E, Ebbesen T W 2004 Phys. Rev. Lett. 92 107401Google Scholar

    [5]

    郑俊娟, 孙刚 2010 59 4008Google Scholar

    Zheng J J, Sun G 2010 Acta Phys. Sin. 59 4008Google Scholar

    [6]

    易永祥, 汪国平, 龙拥兵, 单红 2003 52 604Google Scholar

    Yi Y X, Wang G P, Long Y B, Shan H 2003 Acta Phys. Sin. 52 604Google Scholar

    [7]

    朱旭鹏, 张轼, 石惠民, 陈智全, 全军, 薛书文, 张军, 段辉高 2019 68 247301Google Scholar

    Zhu X P, Zhang S, Shi H M, Chen Z Q, Quan J, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 247301Google Scholar

    [8]

    周强, 林树培, 张朴, 陈学文 2019 68 147104Google Scholar

    Zhou Q, Lin S P, Zhang P, Chen X W 2019 Acta Phys. Sin. 68 147104Google Scholar

    [9]

    Peer A, Biswas R 2016 Nanoscale 8 4657Google Scholar

    [10]

    Xiao B, Pradhan S K, Santiago K C, Rutherford G N, Pradhan A K 2015 Sci. Rep. 5 10393Google Scholar

    [11]

    Guo Y S, Liu S Y, Bi K, Lei M, Zhou J 2018 Photonics Res. 6 1102Google Scholar

    [12]

    Guo Y S, Liang H, Hou X J, Lv X L, Li L F, Li J S, Bi K, Lei M, Zhou J 2016 Appl. Phys. Lett. 108 051906Google Scholar

    [13]

    Guo Y S, Zhou J 2015 Sci. Rep. 5 8144Google Scholar

    [14]

    Guo Y S, Zhou J 2014 Opt. Express 22 27136Google Scholar

    [15]

    Guo Y S, Zhou J, Lan C W, Wu H Y, Bi K 2014 Appl. Phys. Lett. 104 204103Google Scholar

    [16]

    Chong K E, Staude I, James A, Dominguez J, Liu S, Campione S, Subramania G S, Luk T S, Decker M, Neshev D N, Brener I, Kivshar Y S 2015 Nano Lett. 15 5369Google Scholar

    [17]

    Yang Y, Kravchenko I I, Briggs D P, Valentine J 2014 Nat. Commun. 5 5753Google Scholar

    [18]

    杨玖龙, 元晴晨, 陈润丰, 方汉林, 肖发俊, 李俊韬, 姜碧强, 赵建林, 甘雪涛 2019 68 214207Google Scholar

    Yang J L, Yuan Q C, Chen R F, Fang H L, Xiao F J, Li J T, Jiang B Q, Zhao J L, Gan X T 2019 Acta Phys. Sin. 68 214207Google Scholar

    [19]

    Shcherbakov M R, Neshev D N, Hopkins B, Shorokhov A S, Staude I, Melik-Gaykazyan E V, Decker M, Ezhov A A, Miroshnichenko A E, Brener I, Fedyanin A A, Kivshar Y S 2014 Nano Lett. 14 6488Google Scholar

    [20]

    Zywietz U, Schmidt M K, Evlyukhin A B, Reinhardt C, Aizpurua J, Chichkov B N 2015 ACS Photonics 2 913Google Scholar

    [21]

    Groep J V D, Coenen T, Mann S A, Polman A 2016 Optica 3 93Google Scholar

    [22]

    Zeng Y, Hoyer W, Liu J, Koch S W, Moloney J V 2009 Phys. Rev. B 79 235109Google Scholar

    [23]

    Haus H A 1984 Waves and Fields in Optoelectronics (Englewood Cliffs: Prentice-Hall Inc.) pp211−212

  • [1] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器.  , 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [2] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生.  , 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [3] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏.  , 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [4] 付亚男, 张新群, 赵国忠, 李永花, 于佳怡. 基于谐振环的太赫兹宽带偏振转换器件研究.  , 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [5] 韩江枫, 曹祥玉, 高军, 李思佳, 张晨. 一种基于超材料的宽带、反射型90极化旋转体设计.  , 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [6] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计.  , 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [7] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用.  , 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [8] 张晨, 曹祥玉, 高军, 李思佳, 郑月军. 一种基于共享孔径Fabry-Perot谐振腔结构的宽带高增益磁电偶极子微带天线.  , 2016, 65(13): 134205. doi: 10.7498/aps.65.134205
    [9] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证.  , 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [10] 梁文耀, 张玉霞, 陈武喝. 低对称性光子晶体超宽带全角自准直传输的机理研究.  , 2015, 64(6): 064209. doi: 10.7498/aps.64.064209
    [11] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线.  , 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [12] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体.  , 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [13] 赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢. 人工磁导体正交布阵的宽带低雷达截面反射屏.  , 2013, 62(15): 154204. doi: 10.7498/aps.62.154204
    [14] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究.  , 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [15] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究.  , 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [16] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体.  , 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [17] 陈吴玉婷, 韩鹏昱, Kuo Mei-Ling, Lin Shawn-Yu, 张希成. 具有缓变折射率的太赫兹宽带增透器件.  , 2012, 61(8): 088401. doi: 10.7498/aps.61.088401
    [18] 冯野, 杨毅彪, 王安帮, 王云才. 利用半导体激光器环产生27 GHz的平坦宽带混沌激光.  , 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [19] 张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥. 控制场对宽带超连续谱产生的影响.  , 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
    [20] 王晓慧, 吕志伟, 林殿阳, 王 超, 汤秀章, 龚 坤, 单玉生. 宽带KrF激光抽运的受激布里渊散射反射率研究.  , 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
计量
  • 文章访问数:  6186
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-14
  • 修回日期:  2020-09-08
  • 上网日期:  2021-01-22
  • 刊出日期:  2021-02-05

/

返回文章
返回
Baidu
map