-
表面等离激元共振激发的亚波长金属孔透射较Bethe理论有大幅度的提高, 然而, 由于共振对频率的敏感性以及金属在光频的高损耗特性, 表面等离激元共振难以实现亚波长金属孔的宽带高透射传输. 本文采用放置在金属孔两边的硅纳米颗粒的Mie谐振耦合取代表面等离激元共振, 实现亚波长金属孔的宽带高透射传输. 全波仿真结果表明, 采用Mie谐振耦合的亚波长金属孔(r/λ = 0.1)光传输, 透射系数超过90%的带宽达到65 nm, 与表面等离激元共振诱导的透射增强相比, 峰值增高了1.5倍, 3 dB带宽拓宽了17倍. 根据耦合模理论, 建立了Mie谐振耦合亚波长金属孔透射的等效电路模型, 并在临界耦合状态下反演出电路模型中的元件参数值. 进一步研究发现, 仅通过改变等效电路模型中的耦合系数, 就可全面揭示Mie谐振耦合亚波长金属孔透射的传输规律, 并得到与全波电磁仿真完全一致的结果, 从而找到光与放置硅纳米颗粒的亚波长金属孔相互作用的数学表达, 也给予人们在光学领域按照电路设计方法构建相应功能模块的启示.Transmission of the subwavelength metal aperture excited by the surface plasmon resonance is much higher than that from the Bethe theory. However, due to the sensitivity of resonant frequency and the loss of metal in optical band, it is difficult to achieve broadband and high transmission of the subwavelength metal aperture through surface plasmon resonance. In this article, the broadband and high transmission of the subwavelength metal aperture is realized when Mie-resonant-coupled silicon nanoparticles placed on both sides of the metal aperture are used to replace the surface plasmon resonance. The full wave simulation results show that bandwidth of the transmission coefficient more than 90% of the subwavelength aperture (
$ {r \mathord{\left/ {\vphantom {r {\lambda = 0.1}}} \right. } {\lambda = 0.1}}$ ) reaches 65 nm by using Mie-resonance-coupled silicon nanoparticles. Compared with the transmission induced by surface plasmon resonance, the peak value is improved by 1.5 times and the 3 dB bandwidth is widened by 17 times. According to the coupled mode theory, the equivalent circuit model of transmission of the subwavelength metal aperture added with Mie-resonance-coupled silicon nanoparticles is established, and the element parameters in the circuit model are inversed under the critical coupling state. Further research shows that transmission rule of the subwavelength metal aperture added with Mie-resonance coupled silicon nanoparticles can be accurately revealed by changing the coupling coefficient in the equivalent circuit model, and the results are consistent with the full wave electromagnetic simulation results. The mathematical expression of the interaction between light and Mie-resonance-coupled subwavelength metal aperture is found, therefore it can inspire us to construct certain functional modules in optical field according to circuit design method.-
Keywords:
- subwavelength metal aperture /
- broadband /
- high transmission /
- Mie resonance
[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T 1998 Nature 391 667Google Scholar
[2] Garcia-Vidal F J, Martin-Moreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729Google Scholar
[3] 姚尧, 沈悦, 郝加明, 戴宁 2019 68 147802Google Scholar
Yao Y, Shen Y, Hao J M, Dai N 2019 Acta Phys. Sin. 68 147802Google Scholar
[4] Barnes W L, Murray W A, Dintinger J, Devaux E, Ebbesen T W 2004 Phys. Rev. Lett. 92 107401Google Scholar
[5] 郑俊娟, 孙刚 2010 59 4008Google Scholar
Zheng J J, Sun G 2010 Acta Phys. Sin. 59 4008Google Scholar
[6] 易永祥, 汪国平, 龙拥兵, 单红 2003 52 604Google Scholar
Yi Y X, Wang G P, Long Y B, Shan H 2003 Acta Phys. Sin. 52 604Google Scholar
[7] 朱旭鹏, 张轼, 石惠民, 陈智全, 全军, 薛书文, 张军, 段辉高 2019 68 247301Google Scholar
Zhu X P, Zhang S, Shi H M, Chen Z Q, Quan J, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 247301Google Scholar
[8] 周强, 林树培, 张朴, 陈学文 2019 68 147104Google Scholar
Zhou Q, Lin S P, Zhang P, Chen X W 2019 Acta Phys. Sin. 68 147104Google Scholar
[9] Peer A, Biswas R 2016 Nanoscale 8 4657Google Scholar
[10] Xiao B, Pradhan S K, Santiago K C, Rutherford G N, Pradhan A K 2015 Sci. Rep. 5 10393Google Scholar
[11] Guo Y S, Liu S Y, Bi K, Lei M, Zhou J 2018 Photonics Res. 6 1102Google Scholar
[12] Guo Y S, Liang H, Hou X J, Lv X L, Li L F, Li J S, Bi K, Lei M, Zhou J 2016 Appl. Phys. Lett. 108 051906Google Scholar
[13] Guo Y S, Zhou J 2015 Sci. Rep. 5 8144Google Scholar
[14] Guo Y S, Zhou J 2014 Opt. Express 22 27136Google Scholar
[15] Guo Y S, Zhou J, Lan C W, Wu H Y, Bi K 2014 Appl. Phys. Lett. 104 204103Google Scholar
[16] Chong K E, Staude I, James A, Dominguez J, Liu S, Campione S, Subramania G S, Luk T S, Decker M, Neshev D N, Brener I, Kivshar Y S 2015 Nano Lett. 15 5369Google Scholar
[17] Yang Y, Kravchenko I I, Briggs D P, Valentine J 2014 Nat. Commun. 5 5753Google Scholar
[18] 杨玖龙, 元晴晨, 陈润丰, 方汉林, 肖发俊, 李俊韬, 姜碧强, 赵建林, 甘雪涛 2019 68 214207Google Scholar
Yang J L, Yuan Q C, Chen R F, Fang H L, Xiao F J, Li J T, Jiang B Q, Zhao J L, Gan X T 2019 Acta Phys. Sin. 68 214207Google Scholar
[19] Shcherbakov M R, Neshev D N, Hopkins B, Shorokhov A S, Staude I, Melik-Gaykazyan E V, Decker M, Ezhov A A, Miroshnichenko A E, Brener I, Fedyanin A A, Kivshar Y S 2014 Nano Lett. 14 6488Google Scholar
[20] Zywietz U, Schmidt M K, Evlyukhin A B, Reinhardt C, Aizpurua J, Chichkov B N 2015 ACS Photonics 2 913Google Scholar
[21] Groep J V D, Coenen T, Mann S A, Polman A 2016 Optica 3 93Google Scholar
[22] Zeng Y, Hoyer W, Liu J, Koch S W, Moloney J V 2009 Phys. Rev. B 79 235109Google Scholar
[23] Haus H A 1984 Waves and Fields in Optoelectronics (Englewood Cliffs: Prentice-Hall Inc.) pp211−212
-
-
[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T 1998 Nature 391 667Google Scholar
[2] Garcia-Vidal F J, Martin-Moreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729Google Scholar
[3] 姚尧, 沈悦, 郝加明, 戴宁 2019 68 147802Google Scholar
Yao Y, Shen Y, Hao J M, Dai N 2019 Acta Phys. Sin. 68 147802Google Scholar
[4] Barnes W L, Murray W A, Dintinger J, Devaux E, Ebbesen T W 2004 Phys. Rev. Lett. 92 107401Google Scholar
[5] 郑俊娟, 孙刚 2010 59 4008Google Scholar
Zheng J J, Sun G 2010 Acta Phys. Sin. 59 4008Google Scholar
[6] 易永祥, 汪国平, 龙拥兵, 单红 2003 52 604Google Scholar
Yi Y X, Wang G P, Long Y B, Shan H 2003 Acta Phys. Sin. 52 604Google Scholar
[7] 朱旭鹏, 张轼, 石惠民, 陈智全, 全军, 薛书文, 张军, 段辉高 2019 68 247301Google Scholar
Zhu X P, Zhang S, Shi H M, Chen Z Q, Quan J, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 247301Google Scholar
[8] 周强, 林树培, 张朴, 陈学文 2019 68 147104Google Scholar
Zhou Q, Lin S P, Zhang P, Chen X W 2019 Acta Phys. Sin. 68 147104Google Scholar
[9] Peer A, Biswas R 2016 Nanoscale 8 4657Google Scholar
[10] Xiao B, Pradhan S K, Santiago K C, Rutherford G N, Pradhan A K 2015 Sci. Rep. 5 10393Google Scholar
[11] Guo Y S, Liu S Y, Bi K, Lei M, Zhou J 2018 Photonics Res. 6 1102Google Scholar
[12] Guo Y S, Liang H, Hou X J, Lv X L, Li L F, Li J S, Bi K, Lei M, Zhou J 2016 Appl. Phys. Lett. 108 051906Google Scholar
[13] Guo Y S, Zhou J 2015 Sci. Rep. 5 8144Google Scholar
[14] Guo Y S, Zhou J 2014 Opt. Express 22 27136Google Scholar
[15] Guo Y S, Zhou J, Lan C W, Wu H Y, Bi K 2014 Appl. Phys. Lett. 104 204103Google Scholar
[16] Chong K E, Staude I, James A, Dominguez J, Liu S, Campione S, Subramania G S, Luk T S, Decker M, Neshev D N, Brener I, Kivshar Y S 2015 Nano Lett. 15 5369Google Scholar
[17] Yang Y, Kravchenko I I, Briggs D P, Valentine J 2014 Nat. Commun. 5 5753Google Scholar
[18] 杨玖龙, 元晴晨, 陈润丰, 方汉林, 肖发俊, 李俊韬, 姜碧强, 赵建林, 甘雪涛 2019 68 214207Google Scholar
Yang J L, Yuan Q C, Chen R F, Fang H L, Xiao F J, Li J T, Jiang B Q, Zhao J L, Gan X T 2019 Acta Phys. Sin. 68 214207Google Scholar
[19] Shcherbakov M R, Neshev D N, Hopkins B, Shorokhov A S, Staude I, Melik-Gaykazyan E V, Decker M, Ezhov A A, Miroshnichenko A E, Brener I, Fedyanin A A, Kivshar Y S 2014 Nano Lett. 14 6488Google Scholar
[20] Zywietz U, Schmidt M K, Evlyukhin A B, Reinhardt C, Aizpurua J, Chichkov B N 2015 ACS Photonics 2 913Google Scholar
[21] Groep J V D, Coenen T, Mann S A, Polman A 2016 Optica 3 93Google Scholar
[22] Zeng Y, Hoyer W, Liu J, Koch S W, Moloney J V 2009 Phys. Rev. B 79 235109Google Scholar
[23] Haus H A 1984 Waves and Fields in Optoelectronics (Englewood Cliffs: Prentice-Hall Inc.) pp211−212
计量
- 文章访问数: 6186
- PDF下载量: 125
- 被引次数: 0