搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于共享孔径Fabry-Perot谐振腔结构的宽带高增益磁电偶极子微带天线

张晨 曹祥玉 高军 李思佳 郑月军

引用本文:
Citation:

一种基于共享孔径Fabry-Perot谐振腔结构的宽带高增益磁电偶极子微带天线

张晨, 曹祥玉, 高军, 李思佳, 郑月军

Design of a broadband and high-gain shared-aperture fabry-perot resonator magneto-electric microstrip antenna

Zhang Chen, Cao Xiang-Yu, Gao Jun, Li Si-Jia, Zheng Yue-Jun
PDF
导出引用
  • 设计了一种工作于X波段的基于共享孔径Fabry-Perot(F-P)谐振腔结构的宽带高增益磁电偶极子微带天线, 并设计了三种不同尺寸的双层FSS单元, 通过共享孔径布阵组成了超材料覆层. 利用三种FSS单元的相位补偿特性, 有效拓展了覆层天线的增益带宽. 实测和仿真结果均表明, 加载超材料覆层后, 磁电偶极子天线在7.8- 12.3 GHz内S11-10 dB, 相对带宽达到44.7%, 覆盖整个X波段. 天线增益在7.9-12.1 GHz 内均有明显的提高, 最大提高了7 dB. 相较于传统的F-P谐振腔结构覆层天线, 设计的基于共享孔径的F-P谐振型超材料覆层天线能够明显拓展天线增益带宽, 在新型宽带高增益天线设计方面具有广阔的应用前景.
    The demands for highly directive antennas are becoming more stringent, especially in microwave regions. Traditional ways to enhance the antenna gain such as reflectors, dielectric lenses, waveguide horns and microstrip antenna arrays suffer design complexity, high cost and power loss in the feeding network, so it is urgent to find a simple way to solve the problem. Fabry-Perot (F-P) antenna has a high directivity and low sidewall, owing to the resonance of the cavity in a cophasal and tapered field distribution along the lateral direction. However, the disadvantage of F-P antenna is obvious for the inherently narrow gain bandwidth which inhibits their many applications. In this paper, a broadband and high-gain shared-aperture F-P resonator magneto-electric (ME) microstrip antenna working at X band is designed and fabricated. In order to design a wideband metamaterial superstrate unit, the structure with two different frequency selective surface (FSS) layers is presented: the metal pattern at the top of the unit is a square patch and has a high reflection coefficient in the high frequency band, and at the bottom the metal pattern is a cross patch, it has a high reflection coefficient in the low frequency band, therefore, the whole unit should resonate in a broadband frequency range. Theoretical analysis and simulation result indicate that the unit has a linearly increasing phase response and a high reflection coefficient across a broadband range and it has the potential to construct a wideband F-P resonator antenna. In the proposed antenna, a novel wideband ME microstrip antenna is used as the feeding source. For the antenna covers the whole X band, the bandwidth of the F-P resonator superstrate should be further expanded. Simulated calculation results indicate that different sizes of two-layer FSSs have different reflection phases but the same coefficient, therefore a shared-aperture structure with three different sizes of FSSs is obtained. The arrangement utilizes the phase compensation property along different FSSs, and broadens the gain enhancement bandwidth effectively. When the superstrate is set to be approximately 15.5 mm above the ground plane of the ME antenna, the antenna possesses an impedance bandwidth of 44.7% for the reflection coefficient (S11) below -10 dB from 7.8 GHz to 12.3 GHz, covering the whole X band. From 7.9 GHz to 12.1 GHz, the antenna has an obvious gain enhancement, with a peak of 7 dB. Numerical and experimental results indicate that compared with the traditional F-P resonator structure, the shared-aperture metamaterial superstrate can effectively broaden the antenna gain enhancement bandwidth, and it has great application values for designing new broadband metamaterial superstrate high-gain antennas.
      通信作者: 曹祥玉, gjgj9694@163.com
    • 基金项目: 国家自然科学基金(批准号: 61271100, 61471389, 61501494)资助的课题.
      Corresponding author: Cao Xiang-Yu, gjgj9694@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271100, 61471389, 61501494).
    [1]

    Qu S W 2012 IEEE Antennas Wireless Propaga. Lett. 11 850

    [2]

    Zheng Y J, Gao J, Cao X Y, Zheng Q R, Li S J, Li W Q, Yang Q 2014 Acta Phys. Sin. 63 224102 (in Chinese) [郑月军, 高军, 曹祥玉, 郑秋荣, 李思佳, 李文强, 杨群 2014 63 224102]

    [3]

    Sun Y Z, Ran L X, Peng L, Wang W G, Li T, Zhao X, Chen Q L 2009 Chin. Phys. B 18 017405

    [4]

    Liu Y, Zhang X 2011 Chem. Soc. Rev. 40 2494

    [5]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [6]

    Fan Y N, Cheng Y Z, Nie Y, Wang X, Gong R Z 2013 Chin. Phys. B 22 067801

    [7]

    Li S J, Gao J, Cao X Y, Li W Q, Zhang Z, Zhang D 2014 J. Appl. Phys. 116 043710

    [8]

    Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402

    [9]

    Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 62 064103]

    [10]

    Li S J, Gao J, Cao X Y, Zhang Z, Zheng Y J, Zhang C 2015 Opt. Express 23 3523

    [11]

    Singh R, Plum E, Zhang W, Zheludev N I 2010 Opt. Express 18 13425

    [12]

    Slovick B, Yu Z G, Berding M, Krishnamurthy S 2013 Phys. Rev. B 88 165116

    [13]

    Tang G M, Miao J G, Dong J M 2012 Chin. Phys. B 21 128401

    [14]

    Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101

    [15]

    Trentini G V 1956 IRE Trans. 4 666

    [16]

    Wang N Z, Li J Z, Wei G, Talbi L, Zeng Q S, Xu J D 2015 IEEE Antennas Wireless Propaga. Lett. 14 229

    [17]

    Wang T T, Ge Y X, Chang J H, Wang M 2016 IEEE Pho. Technol. Lett. 28 3

    [18]

    Ge Y H, Esselle K P, Bird T S 2012 IEEE Trans. Antennas Propag. 60 743

    [19]

    Al-Tarifi M A, Anagnostou D E, Amert A K, Whites K W 2013 IEEE Trans. Antennas Propag. 61 1898

    [20]

    Vettikalladi H, Lafond O, Himdi M 2009 IEEE Antennas Wireless Propag. Lett. 8 1422

    [21]

    Feresidis A P, Goussetis S, Wang S, Vardaxoglou J C 2005 IEEE Trans. Antennas Propag. 53 209

    [22]

    Muhammad S A, Sauleau R, Coq L, Legay H 2011 IEEE Antennas Wireless Propag. Lett. 10 907

    [23]

    Gardelli R, Albani M, Capolino F 2006 IEEE Trans. Antennas Propag. 54 1979

    [24]

    Zeb B A, Ge Y H, Esselle K P, Sun Z, Tobar M E 2012 IEEE Trans. Antennas Propag. 60 4522

    [25]

    Wang N Z, Liu Q, Wu C Y, Talbi L, Zeng Q S, Xu J D 2014 IEEE Trans. Antennas Propag. 62 2463

    [26]

    Chu Q X, Ma H Q, Zheng H L 2008 IEEE Trans. Antennas Propag. 56 3391

    [27]

    Weily A R, Esselle K P, Bird T S, Sanders B C 2007 IET Microw. Antennas Propag. 1 198

  • [1]

    Qu S W 2012 IEEE Antennas Wireless Propaga. Lett. 11 850

    [2]

    Zheng Y J, Gao J, Cao X Y, Zheng Q R, Li S J, Li W Q, Yang Q 2014 Acta Phys. Sin. 63 224102 (in Chinese) [郑月军, 高军, 曹祥玉, 郑秋荣, 李思佳, 李文强, 杨群 2014 63 224102]

    [3]

    Sun Y Z, Ran L X, Peng L, Wang W G, Li T, Zhao X, Chen Q L 2009 Chin. Phys. B 18 017405

    [4]

    Liu Y, Zhang X 2011 Chem. Soc. Rev. 40 2494

    [5]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [6]

    Fan Y N, Cheng Y Z, Nie Y, Wang X, Gong R Z 2013 Chin. Phys. B 22 067801

    [7]

    Li S J, Gao J, Cao X Y, Li W Q, Zhang Z, Zhang D 2014 J. Appl. Phys. 116 043710

    [8]

    Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402

    [9]

    Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 62 064103]

    [10]

    Li S J, Gao J, Cao X Y, Zhang Z, Zheng Y J, Zhang C 2015 Opt. Express 23 3523

    [11]

    Singh R, Plum E, Zhang W, Zheludev N I 2010 Opt. Express 18 13425

    [12]

    Slovick B, Yu Z G, Berding M, Krishnamurthy S 2013 Phys. Rev. B 88 165116

    [13]

    Tang G M, Miao J G, Dong J M 2012 Chin. Phys. B 21 128401

    [14]

    Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101

    [15]

    Trentini G V 1956 IRE Trans. 4 666

    [16]

    Wang N Z, Li J Z, Wei G, Talbi L, Zeng Q S, Xu J D 2015 IEEE Antennas Wireless Propaga. Lett. 14 229

    [17]

    Wang T T, Ge Y X, Chang J H, Wang M 2016 IEEE Pho. Technol. Lett. 28 3

    [18]

    Ge Y H, Esselle K P, Bird T S 2012 IEEE Trans. Antennas Propag. 60 743

    [19]

    Al-Tarifi M A, Anagnostou D E, Amert A K, Whites K W 2013 IEEE Trans. Antennas Propag. 61 1898

    [20]

    Vettikalladi H, Lafond O, Himdi M 2009 IEEE Antennas Wireless Propag. Lett. 8 1422

    [21]

    Feresidis A P, Goussetis S, Wang S, Vardaxoglou J C 2005 IEEE Trans. Antennas Propag. 53 209

    [22]

    Muhammad S A, Sauleau R, Coq L, Legay H 2011 IEEE Antennas Wireless Propag. Lett. 10 907

    [23]

    Gardelli R, Albani M, Capolino F 2006 IEEE Trans. Antennas Propag. 54 1979

    [24]

    Zeb B A, Ge Y H, Esselle K P, Sun Z, Tobar M E 2012 IEEE Trans. Antennas Propag. 60 4522

    [25]

    Wang N Z, Liu Q, Wu C Y, Talbi L, Zeng Q S, Xu J D 2014 IEEE Trans. Antennas Propag. 62 2463

    [26]

    Chu Q X, Ma H Q, Zheng H L 2008 IEEE Trans. Antennas Propag. 56 3391

    [27]

    Weily A R, Esselle K P, Bird T S, Sanders B C 2007 IET Microw. Antennas Propag. 1 198

  • [1] 吕晓龙, 陆浩然, 郭云胜. Mie谐振耦合的亚波长金属孔宽带高透射传输.  , 2021, 70(3): 034201. doi: 10.7498/aps.70.20201121
    [2] 杨浩楠, 曹祥玉, 高军, 杨欢欢, 李桐. 基于宽波束磁电偶极子天线的宽角扫描线性相控阵列.  , 2021, 70(1): 014101. doi: 10.7498/aps.70.20201104
    [3] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生.  , 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [4] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏.  , 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [5] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计.  , 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [6] 付亚男, 张新群, 赵国忠, 李永花, 于佳怡. 基于谐振环的太赫兹宽带偏振转换器件研究.  , 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [7] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计.  , 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [8] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用.  , 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [9] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计.  , 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [10] 袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷. 一种性能稳定的新型频率选择表面及其微带天线应用.  , 2014, 63(1): 014102. doi: 10.7498/aps.63.014102
    [11] 赵一, 曹祥玉, 张迪, 姚旭, 李思佳, 杨欢欢, 李文强. 一种兼有高增益和宽带低散射特征的波导缝隙天线设计.  , 2014, 63(3): 034101. doi: 10.7498/aps.63.034101
    [12] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线.  , 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [13] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究.  , 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [14] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体.  , 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [15] 陈吴玉婷, 韩鹏昱, Kuo Mei-Ling, Lin Shawn-Yu, 张希成. 具有缓变折射率的太赫兹宽带增透器件.  , 2012, 61(8): 088401. doi: 10.7498/aps.61.088401
    [16] 冯野, 杨毅彪, 王安帮, 王云才. 利用半导体激光器环产生27 GHz的平坦宽带混沌激光.  , 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [17] 王争, 赵新杰, 何明, 周铁戈, 岳宏卫, 阎少林. 嵌入到Fabry-Perot谐振腔的双晶约瑟夫森结阵列的阻抗匹配和相位锁定研究.  , 2010, 59(5): 3481-3487. doi: 10.7498/aps.59.3481
    [18] 岳宏卫, 阎少林, 周铁戈, 谢清连, 游峰, 王争, 何明, 赵新杰, 方兰, 杨扬, 王福音, 陶薇薇. 嵌入Fabry-Perot谐振腔的高温超导双晶约瑟夫森结的毫米波辐照特性研究.  , 2010, 59(2): 1282-1287. doi: 10.7498/aps.59.1282
    [19] 张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥. 控制场对宽带超连续谱产生的影响.  , 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
    [20] 王晓慧, 吕志伟, 林殿阳, 王 超, 汤秀章, 龚 坤, 单玉生. 宽带KrF激光抽运的受激布里渊散射反射率研究.  , 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
计量
  • 文章访问数:  6631
  • PDF下载量:  346
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-25
  • 修回日期:  2016-04-16
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map