搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类化学气相沉积法制备缺陷可控的三维石墨烯泡沫及其复合电极电化学性能

王文旭 任衍彪 张世超 张临财 亓敬波 何小武

引用本文:
Citation:

类化学气相沉积法制备缺陷可控的三维石墨烯泡沫及其复合电极电化学性能

王文旭, 任衍彪, 张世超, 张临财, 亓敬波, 何小武

Preparation of three-dimensional graphene foam with controllable defects by closed-environment chemical vapor deposition method and composite electrode electrochemical performance

Wang Wen-Xun, Ren Yan-Biao, Zhang Shi-Chao, Zhang Lin-Cai, Qi Jing-Bo, He Xiao-Wu
PDF
HTML
导出引用
  • 三维石墨烯为开发高能量密度的电极提供了有效的途径. 与二维石墨烯相比, 三维石墨烯具有三维导电网络, 极大地改善锂离子和电子传输的能力, 同时能够承受电极循环期间的结构和体积变化. 本文发展了低压封闭化学气相沉积法(CVD), 以泡沫镍为模板, 采用聚甲基丙烯酸甲酯为固态碳源来制备缺陷可控的三维石墨烯泡沫. 分别研究了碳源添加量、反应时间及氢气含量对三维石墨烯泡沫形貌及结构的影响, 发展了一种新型的三维石墨烯泡沫制备工艺, 所制备的三维石墨烯泡沫具有缺陷密度可控, 质量轻及化学性能稳定的特点. 以三维石墨烯泡沫为导电框架和活性物载体来制备ZnO/石墨烯泡沫(ZnO/GF)复合电极并作为锂离子电池负极, 循环200圈后仍能保持851.5 mA·h·g-1的高比容量, ZnO/三维石墨烯电极表现出较高的可逆容量以及优异的循环性能.
    Three-dimensional graphene provides a promising approach to developing high-energy-density electrodes. Compared with two-dimensional (2D) graphene, three-dimensional (3D) graphene has a three-dimensional conductive network, which greatly improves the ability of lithium ions and electron to transport and can tolerate the changes of structural and volume in the cycling process. In this paper, 3D graphene with controllable defects is prepared by using an innovative low-pressure closed chemical vapor deposition method, through using nickel foam as the template and polymethyl methacrylate as a solid carbon source. The effects of the amount of carbon source addition, reaction time and hydrogen content on the morphology and structure of graphene foam are analyzed. The experimental results indicate that the amount of carbon source added, the reaction time, and the hydrogen content have significant effects on the morphology and structure of graphene. The defect density and the number of layers of as-prepared graphene are directly proportional to the amount of carbon source added. There is a threshold for the reaction time. After reaching a certain reaction time, graphene with good structure and morphology can be formed. The optimal reaction time is about 20 min. The hydrogen content promotes the high-temperature pyrolysis of solid carbon source. The sample has a highest defect density at 0.5 kPa hydrogen content. In summary, the low-pressure closed CVD method has strong safety and can synthesize 3D graphene with excellent controllable structure and defects. The 3D graphene foam with a complete structure of 2–5 layers can be prepared under the conditions of 1000 ℃, 500 μL carbon source addition, 20 min reaction time and 0.5 kPa hydrogen content, displaying the best physical chemistry performance. The graphene foam prepared in this experiment has the characteristics of convenient and controllable defect density, light weight and stable chemical properties. When ZnO/GF electrode prepared with 3D GF as a conductive frame and active carrier is used as an anode, the lithium ion battery has a high specific capacity of 851.5 mA·h·g–1 after 200 cycles, which exhibites high reversible capacity and good cycling performance. Although ZnO/GF electrode displays excellent lithium storage performance, the GF prepared based on the 3D Ni foam has a low spatial structure density and the surface loading of the ZnO/GF composite electrode is still low, resulting in a low energy density. Therefore, the following researchers should focus on the structural design of 3D graphene host/current collector to obtain a 3D graphene frame with high conductivity and high loading capacity.
      通信作者: 任衍彪, renyanbiao@uzz.edu.cn
    • 基金项目: 国家级-总装预研基金重点项目(6140721020103)
      Corresponding author: Ren Yan-Biao, renyanbiao@uzz.edu.cn
    [1]

    Fang H, Zou W, Yan J, Xing Y L, Zhang S C 2018 ChemElectroChem 5 2458Google Scholar

    [2]

    Peng H J, Huang J Q, Cheng X B, Zhang Q 2017 Adv. Energy Mater. 24 54

    [3]

    Xu Y X, Lin Z Y, Huang X Q, Wang Y, Huang Y, Duan X F 2013 Adv. Mater. 25 5779Google Scholar

    [4]

    Wei S Y, Ma L, Hendrickson K E, Tu Z Y, Archer L A 2015 J. Am. Chem. Soc. 37 12143

    [5]

    Fang H, Meng F T, Chen G Y, Wang L X, Zhang S C, Yan J, Zhang L S, Zhang Y X 2019 Int. J. Electrochem. Sci. 14 7937

    [6]

    Li G R, Lei W, Luo D, Deng Y P 2018 Adv. Energy Mater. 8 1702381Google Scholar

    [7]

    Geim A K, Novoselov K S 2007 Nat. Mater. 3 183

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [9]

    Guo H, Wang X Y, Bao D L, Lu L L, Zhang Y Y, Li Geng, Wang Y L, Du S X, Gao H J 2019 Chin. Phys. B 28 078103Google Scholar

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M L, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 7065 197

    [11]

    Li X S, Magnuson C W, Venugopal A, An J H, Suk J W, Han B Y, Borysiak M, Cai W W, Velamakanni A, Zhu Y W, Fu L F, Vogel E M, VoelkL E, Colombo L G, Ruoff R S 2010 Nano Lett. 11 4328

    [12]

    Li X S, Cai W W, Colombo L G, Ruoff R S 2009 Nano Lett. 12 4268

    [13]

    Ito Y, Christodoulou C, Nardi M V, Koch N, Sachdec H, Mullen K 2014 ACS Nano 8 3337Google Scholar

    [14]

    任文才, 高力波, 马来鹏 2011 新型炭材料 1 71

    Ren W C, Gao L B, Ma L P 2011 New Carbon Mater. 1 71

    [15]

    Ci L J, Xu Z P, Wang L L, Gao W, Ding F, Kelly K F, Yakobson B I, Ajayan P M 2008 Nano Res. 1 116Google Scholar

    [16]

    Rodrı′guez-Manzo J A, Pham-Huu C, Banhart F 2011 ACS Nano 2 1529

    [17]

    Ji H X, Hao Y F, Ren Y J, Charlton M, Lee W H, Wu Q Z, Li H F, Zhu Y W, Wu Y P, Piner R, Ruoff R S 2011 ACS Nano 9 7656

    [18]

    Raccichini R, Varzi A, Passerini S, Scrosati B 2015 Nat. Mater. 14 271Google Scholar

    [19]

    Bi H, Chen I W, Lin T 2015 Adv. Mater. 39 5943

    [20]

    Ito Y, Tanabe Y, Qiu H J, Sugawara K, Heguri S, Tu N H, Huynh K K, Fujita T, TakahashivT, Tanigaki K, Chen M 2014 Angew Chem. Int. Ed. 53 4822Google Scholar

    [21]

    Dong X C, Wang X W, Wang L H, Song H, Zhang H, Huang W, Chen P 2012 ACS Appl. Mater. Interfaces 6 3129

    [22]

    Dong X C, Ma Y W, Zhu G Y, Huang Y X, Wang J, Chan-Park M B, Wang L H, Huang W, Chen P 2012 J. Mater. Chem. 22 17044Google Scholar

    [23]

    Li Z C, Wu P, Wang C X, Fan X D, Zhang W H, Zhai X F, Zeng C G, Li Z Y, Yang J L, Hou J G 2011 ACS Nano 5 3385Google Scholar

    [24]

    Xiao X Y, Beechem T E, Brumbach M T, Lambert T N, Davis D J, Michael J R, Washburn C M, Wang J, Brozik S M, Wheeler D R, Burcker D B, Polsky R 2012 ACS Nano 6 3573Google Scholar

    [25]

    Fernandez Merino M J, Guardia L, Paredes J I, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon J M D 2010 J. Phys. Chem. C 114 6426

    [26]

    Zhang L B, Chen G Y, Hedhili M N, Zhang H N, Wang P 2012 Nanoscale 4 7038Google Scholar

    [27]

    Fang H, Meng F T, Yan J, Chen G Y, Zhang L S, Wu S D, Zhang S C, Wan L Z, Zhang Y X 2019 RSC Adv. 9 20107Google Scholar

    [28]

    Fang H, Chen G Y, Wang L X, Yan J, Zhang L S, Gao K Z, Zhang Y X, Wang L Z 2018 RSC Adv. 8 38550Google Scholar

    [29]

    Wang W X, Yang P H, Jian Z X, Li H L, Xing Y L, Zhang S C 2018 J. Mater. Chem. A 6 13797Google Scholar

    [30]

    Wang W X, Zhang S C, Xing Y L, Wang S B, Ren Y B 2016 RSC Adv. 6 75414Google Scholar

    [31]

    Chen Z P, Ren W C, Gao L B, Liu B L, Pei S F, Cheng H M 2011 Nat. Mater. 10 424Google Scholar

    [32]

    Compton O C, Nguyen S T 2010 Small 6 711Google Scholar

    [33]

    Wu J, Xu H, Zhang J 2014 Acta Chim. Sin. 72 301Google Scholar

    [34]

    Malard L M, Pimenta M A, Dresselhaus G, Dresselhaus M S 2009 Phys. Rep. 473 51Google Scholar

    [35]

    Ferrari A C, Basko D M 2013 Nat. Nanotechnol. 8 235Google Scholar

    [36]

    Chae S J, Güneş F, Kim K K, Kim E S, Han G H, Kim S M, Shin H J, Yoon S M, Chio J Y, Park M H, Yang C W, Pribat D, Lee Y H 2009 Adv. Mater. 21 2328Google Scholar

    [37]

    Zhang Y, Gomez L, Ishikawa F N, Madaria A, Ryu K, Wang C, Badmaev A, Zhou C W 2010 J. Phys. Chem. Lett. 1 3101Google Scholar

    [38]

    Ashkenov N, Mbenkum B N, Bundesmann C, Riede V, Lorenz M, Spemann D, Kaidashev E M, Kasic A, Schubert M, Grundmann M, Wagner G, Neumann H, Darakchieva V, Arwin H, Monemar B 2003 J. Appl. Phys. 93 126Google Scholar

    [39]

    Bundesmann C, Ashkenov N, Schubert M, Spemann D, Butz T, Kaidashev E M, Lorenz M, Grundmann M 2003 App. Phys. Lett. 83 1974Google Scholar

    [40]

    Fang H, Zhang L S, Xing Y L, Zhang S C, Wu S D 2018 Int. J. Electrochem. Sci. 13 8736

    [41]

    Liu J, Zhang Y H, Bai Z M, Huang Z A, Gao Y K 2019 Chin. Phys. B 28 048101Google Scholar

  • 图 1  自支撑3D GF的合成过程示意图 (a)−(c)密封的石英管中泡沫镍上生长石墨烯; (d) 具有薄层PMMA膜的G/Ni泡沫涂层; (e) 去除泡沫镍后, PMMA保护的G/Ni泡沫; (f) 自支撑3D GF

    Fig. 1.  Schematic of the synthesis process of a self-supporting 3D GF: (a)−(c) Low pressure closed CVD method uses a sealed quartz tube to grow graphene on nickel foam; (d) G/Ni foam coating with thin PMMA film; (e) etching to remove nickel foam After that, PMMA protected G/Ni foam; (f) self-supporting 3D GF after dissolving the thin PMMA layer with hot acetone.

    图 2  不同固态碳源添加量制备的3D石墨烯泡沫SEM图像 (a) 100 μL; (b) 200 μL; (c) 400 μL; (d) 800 μL

    Fig. 2.  SEM images of GF prepared with different amounts of solid carbon source: (a) 100 μL; (b) 200 μL; (c) 400 μL; (d) 800 μL.

    图 3  低压封闭CVD制备的GF400石墨烯样品的TEM图像 (a) 石墨烯薄膜的低倍TEM图像, 显示出典型的褶皱形貌; (b), (c) 石墨烯薄膜边缘的HRTEM图像; (d) 石墨烯薄膜的电子衍射图案

    Fig. 3.  TEM image of GF400 graphene sample prepared by low pressure closed CVD: (a) Low magnification TEM image of graphene film, showing typical wrinkle morphology; (b), (c) HRTEM image of graphene film edge; (d) electron diffraction pattern of graphene film.

    图 4  石墨烯中面内声子模式与拉曼散射相关的能量和频率范围内的色散关系图

    Fig. 4.  A graph of dispersion in the energy and frequency range for in-plane phonon modes and Raman scattering in graphene.

    图 5  不同反应时间制备的石墨烯泡沫表面SEM图像 (a) 2 min; (b) 5 min; (c) 10 min; (d) 20 min. (e) 不同反应时间制备的石墨烯泡沫拉曼谱图

    Fig. 5.  SEM images of graphene foam surfaces prepared at different reaction times: (a) 2 min; (b) 5 min; (c) 10 min; (d) 20 min. (e) Raman spectra of graphene foams prepared at different reaction time.

    图 6  不同氢气含量制备的石墨烯泡沫表面SEM图像 (a)真空; (b) 0.5 kPa; (c) 5 kPa. (d)不同氢气含量制备的石墨烯泡沫的拉曼谱图

    Fig. 6.  SEM images of graphene foam surfaces prepared with different hydrogen contents: (a) Vacuum; (b) 0.5 kPa; (c) 5 kPa. (d) Raman spectra of graphene foam prepared with different hydrogen contents.

    图 7  样品SEM图像 (a)低压封闭CVD方法制备的G/Ni泡沫; (b)低放大倍数的自支撑3D GF; (c)高放大倍数的自支撑3D GF; (d)石墨烯片边缘的高分辨TEM图像, 双层(2 L)和五层(5 L)石墨烯的层间距约为0.33 nm, 样品由500 μL PMMA添加量制备

    Fig. 7.  SEM images of 3 D GF: (a) G/Ni foam prepared by low-pressure closed CVD method; (b) self-supporting 3D GF with low magnification; (c) self-supporting 3D GF with high magnification; (d) high-resolution TEM image of graphene sheet edge. The interlayer spacing of double-layer (2 L) and five-layer (5 L) graphene is about 0.33 nm, and the samples were prepared with 500 μL of PMMA addition.

    图 8  (a)−(c) 具有不同放大率的ZnO/GF电极SEM图像; (d) ZnO/GF500在电流密度为0.2 A·g–1时的充放电曲线; (e) ZnO/GF300和ZnO/GF500电极在0.2 A·g–1的电流密度下的循环曲线; (f) 在电流密度为0.2 A·g–1下的ZnO/GF500电极第10次和第100次循环后的Nyqusit谱图, 插图为阻抗谱图模拟出的等效电路图

    Fig. 8.  (a)−(c) FE-SEM images of ZnO/GF electrodes with different magnifications; (d) charge-discharge curves of ZnO/GF500 composite; (e) cycle curves of ZnO/GF300 and ZnO/GF500 at current densities of 0.2 A·g–1; (f) the nyqusit spectrum of ZnO/GF500 electrode after 10th and 100th cycles at a current density of 0.2 A·g–1 (inset is the equivalent circuits of ZnO/GF electrode).

    表 1  ZnO/GF500电极基于等效电路图的各参数数值

    Table 1.  Values for all the parameters of ZnO/GF500 electrode based on the equivalent circuits.

    圈数Rs/ΩRf/ΩRct/ΩCPE1/FCPE2/F
    105.615.242.36.4 × 10–56.5 × 10–4
    1004.212.421.71.9 × 10–47.8 × 10–4
    下载: 导出CSV
    Baidu
  • [1]

    Fang H, Zou W, Yan J, Xing Y L, Zhang S C 2018 ChemElectroChem 5 2458Google Scholar

    [2]

    Peng H J, Huang J Q, Cheng X B, Zhang Q 2017 Adv. Energy Mater. 24 54

    [3]

    Xu Y X, Lin Z Y, Huang X Q, Wang Y, Huang Y, Duan X F 2013 Adv. Mater. 25 5779Google Scholar

    [4]

    Wei S Y, Ma L, Hendrickson K E, Tu Z Y, Archer L A 2015 J. Am. Chem. Soc. 37 12143

    [5]

    Fang H, Meng F T, Chen G Y, Wang L X, Zhang S C, Yan J, Zhang L S, Zhang Y X 2019 Int. J. Electrochem. Sci. 14 7937

    [6]

    Li G R, Lei W, Luo D, Deng Y P 2018 Adv. Energy Mater. 8 1702381Google Scholar

    [7]

    Geim A K, Novoselov K S 2007 Nat. Mater. 3 183

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [9]

    Guo H, Wang X Y, Bao D L, Lu L L, Zhang Y Y, Li Geng, Wang Y L, Du S X, Gao H J 2019 Chin. Phys. B 28 078103Google Scholar

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M L, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 7065 197

    [11]

    Li X S, Magnuson C W, Venugopal A, An J H, Suk J W, Han B Y, Borysiak M, Cai W W, Velamakanni A, Zhu Y W, Fu L F, Vogel E M, VoelkL E, Colombo L G, Ruoff R S 2010 Nano Lett. 11 4328

    [12]

    Li X S, Cai W W, Colombo L G, Ruoff R S 2009 Nano Lett. 12 4268

    [13]

    Ito Y, Christodoulou C, Nardi M V, Koch N, Sachdec H, Mullen K 2014 ACS Nano 8 3337Google Scholar

    [14]

    任文才, 高力波, 马来鹏 2011 新型炭材料 1 71

    Ren W C, Gao L B, Ma L P 2011 New Carbon Mater. 1 71

    [15]

    Ci L J, Xu Z P, Wang L L, Gao W, Ding F, Kelly K F, Yakobson B I, Ajayan P M 2008 Nano Res. 1 116Google Scholar

    [16]

    Rodrı′guez-Manzo J A, Pham-Huu C, Banhart F 2011 ACS Nano 2 1529

    [17]

    Ji H X, Hao Y F, Ren Y J, Charlton M, Lee W H, Wu Q Z, Li H F, Zhu Y W, Wu Y P, Piner R, Ruoff R S 2011 ACS Nano 9 7656

    [18]

    Raccichini R, Varzi A, Passerini S, Scrosati B 2015 Nat. Mater. 14 271Google Scholar

    [19]

    Bi H, Chen I W, Lin T 2015 Adv. Mater. 39 5943

    [20]

    Ito Y, Tanabe Y, Qiu H J, Sugawara K, Heguri S, Tu N H, Huynh K K, Fujita T, TakahashivT, Tanigaki K, Chen M 2014 Angew Chem. Int. Ed. 53 4822Google Scholar

    [21]

    Dong X C, Wang X W, Wang L H, Song H, Zhang H, Huang W, Chen P 2012 ACS Appl. Mater. Interfaces 6 3129

    [22]

    Dong X C, Ma Y W, Zhu G Y, Huang Y X, Wang J, Chan-Park M B, Wang L H, Huang W, Chen P 2012 J. Mater. Chem. 22 17044Google Scholar

    [23]

    Li Z C, Wu P, Wang C X, Fan X D, Zhang W H, Zhai X F, Zeng C G, Li Z Y, Yang J L, Hou J G 2011 ACS Nano 5 3385Google Scholar

    [24]

    Xiao X Y, Beechem T E, Brumbach M T, Lambert T N, Davis D J, Michael J R, Washburn C M, Wang J, Brozik S M, Wheeler D R, Burcker D B, Polsky R 2012 ACS Nano 6 3573Google Scholar

    [25]

    Fernandez Merino M J, Guardia L, Paredes J I, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon J M D 2010 J. Phys. Chem. C 114 6426

    [26]

    Zhang L B, Chen G Y, Hedhili M N, Zhang H N, Wang P 2012 Nanoscale 4 7038Google Scholar

    [27]

    Fang H, Meng F T, Yan J, Chen G Y, Zhang L S, Wu S D, Zhang S C, Wan L Z, Zhang Y X 2019 RSC Adv. 9 20107Google Scholar

    [28]

    Fang H, Chen G Y, Wang L X, Yan J, Zhang L S, Gao K Z, Zhang Y X, Wang L Z 2018 RSC Adv. 8 38550Google Scholar

    [29]

    Wang W X, Yang P H, Jian Z X, Li H L, Xing Y L, Zhang S C 2018 J. Mater. Chem. A 6 13797Google Scholar

    [30]

    Wang W X, Zhang S C, Xing Y L, Wang S B, Ren Y B 2016 RSC Adv. 6 75414Google Scholar

    [31]

    Chen Z P, Ren W C, Gao L B, Liu B L, Pei S F, Cheng H M 2011 Nat. Mater. 10 424Google Scholar

    [32]

    Compton O C, Nguyen S T 2010 Small 6 711Google Scholar

    [33]

    Wu J, Xu H, Zhang J 2014 Acta Chim. Sin. 72 301Google Scholar

    [34]

    Malard L M, Pimenta M A, Dresselhaus G, Dresselhaus M S 2009 Phys. Rep. 473 51Google Scholar

    [35]

    Ferrari A C, Basko D M 2013 Nat. Nanotechnol. 8 235Google Scholar

    [36]

    Chae S J, Güneş F, Kim K K, Kim E S, Han G H, Kim S M, Shin H J, Yoon S M, Chio J Y, Park M H, Yang C W, Pribat D, Lee Y H 2009 Adv. Mater. 21 2328Google Scholar

    [37]

    Zhang Y, Gomez L, Ishikawa F N, Madaria A, Ryu K, Wang C, Badmaev A, Zhou C W 2010 J. Phys. Chem. Lett. 1 3101Google Scholar

    [38]

    Ashkenov N, Mbenkum B N, Bundesmann C, Riede V, Lorenz M, Spemann D, Kaidashev E M, Kasic A, Schubert M, Grundmann M, Wagner G, Neumann H, Darakchieva V, Arwin H, Monemar B 2003 J. Appl. Phys. 93 126Google Scholar

    [39]

    Bundesmann C, Ashkenov N, Schubert M, Spemann D, Butz T, Kaidashev E M, Lorenz M, Grundmann M 2003 App. Phys. Lett. 83 1974Google Scholar

    [40]

    Fang H, Zhang L S, Xing Y L, Zhang S C, Wu S D 2018 Int. J. Electrochem. Sci. 13 8736

    [41]

    Liu J, Zhang Y H, Bai Z M, Huang Z A, Gao Y K 2019 Chin. Phys. B 28 048101Google Scholar

  • [1] 许伟良, 党荣彬, 杨佯, 郭秋卜, 丁飞翔, 韩帅, 唐小涵, 刘渊, 左战春, 王晓琦, 杨瑞, 金旭, 容晓晖, 洪捐, 许宁, 胡勇胜. Mg掺杂提升钠离子电池正极材料高电压循环性能.  , 2023, 72(5): 058802. doi: 10.7498/aps.72.20222098
    [2] 刘玮, 冯秋菊, 宜子琪, 俞琛, 王硕, 王彦明, 隋雪, 梁红伟. Cu掺杂β-Ga2O3薄膜的制备及紫外探测性能.  , 2023, 72(19): 198503. doi: 10.7498/aps.72.20230971
    [3] 蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究.  , 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [4] 王铄, 王文辉, 吕俊鹏, 倪振华. 化学气相沉积法制备大面积二维材料薄膜: 方法与机制.  , 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [5] 姚文乾, 孙健哲, 陈建毅, 郭云龙, 武斌, 刘云圻. 二维平面和范德瓦耳斯异质结的可控制备与光电应用.  , 2021, 70(2): 027901. doi: 10.7498/aps.70.20201419
    [6] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究.  , 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [7] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移.  , 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [8] 王文杰, 康智林, 宋茜, 王鑫, 邓加军, 丁迅雷, 车剑滔. 层数变化对堆叠生长的MoS2(1-x) Se2x电子结构的影响.  , 2018, 67(24): 240601. doi: 10.7498/aps.67.20181494
    [9] 李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成. 铜基底上双层至多层石墨烯常压化学气相沉积法制备与机理探讨.  , 2017, 66(5): 058101. doi: 10.7498/aps.66.058101
    [10] 黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳. 六角星形MoSe2双层纳米片的制备及其光致发光性能.  , 2017, 66(13): 137801. doi: 10.7498/aps.66.137801
    [11] 杨云畅, 武斌, 刘云圻. 双层石墨烯的化学气相沉积法制备及其光电器件.  , 2017, 66(21): 218101. doi: 10.7498/aps.66.218101
    [12] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀.  , 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [13] 张健, 巴德纯, 赵崇凌, 刘坤, 杜广煜. 线性微波化学气相沉积制备SiNx薄膜的微结构及光学性能研究.  , 2015, 64(6): 067801. doi: 10.7498/aps.64.067801
    [14] 吴晓萍, 刘金养, 林丽梅, 郑卫峰, 瞿燕, 赖发春. ZnO纳米花的制备及其性能.  , 2015, 64(20): 207802. doi: 10.7498/aps.64.207802
    [15] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究.  , 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [16] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究.  , 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [17] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究.  , 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [18] 袁泽, 高红, 徐玲玲, 陈婷婷, 郎颖. In, Al共掺杂ZnO纳米串光电探测器的组装与研究.  , 2012, 61(5): 057201. doi: 10.7498/aps.61.057201
    [19] 李宇杰, 谢凯, 李效东, 许静, 韩喻, 杜盼盼. 低温等离子体增强化学气相沉积法制备Ge反opal三维光子晶体及其光学性能.  , 2010, 59(3): 1839-1846. doi: 10.7498/aps.59.1839
    [20] 曾春来, 唐东升, 刘星辉, 海 阔, 羊 亿, 袁华军, 解思深. 化学气相沉积法中SnO2一维纳米结构的控制生长.  , 2007, 56(11): 6531-6536. doi: 10.7498/aps.56.6531
计量
  • 文章访问数:  9304
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-27
  • 修回日期:  2020-04-27
  • 上网日期:  2020-05-08
  • 刊出日期:  2020-07-20

/

返回文章
返回
Baidu
map