-
通过溶剂蒸发对流自组装法制备SiO2三维有序胶体晶体模板,采用等离子体增强化学气相沉积法在200℃低温条件下填充高折射率材料Ge,获得了Ge反opal三维光子晶体.实现了低于GeH4热分解温度的低温填充.通过扫描电镜、X射线衍射仪和傅里叶变换显微红外光谱仪对Ge反opal的形貌、成分和光学性能进行了表征.结果表明:沉积得到无定型态Ge,退火后形成多晶Ge,Ge在SiO2微球空隙内填充致密均匀.Ge反opal的反射光谱有明显的光学反射峰,表现
-
关键词:
- Ge反蛋白石(opal)光子晶体 /
- 低温等离子增强化学气相沉积 /
- 高分子材料 /
- 光子带隙
By the solvent vaporization convection self-assembly method, silica colloidal crystal template was prepared. At 200℃, using GeH4 as the precursor gas, plasma enhanced chemical vapour deposition method was then used to fill the high refractive index material germanium, and germanium inverse opal photonic crystal was obtained. At the temperature lower than the temperature of thermal decomposition, GeH4 filling of germanium is realized. The morphology, composition, and optical property of the resulting samples were characterized by scanning electron microscopy, X-ray diffraction and Fourier transform microscopic IR spectroscopy. Results show that of germanium is amorphous, it is transformed into polycrystalline state by annealing. The germanium is homogeneously distributed inside the voids of silica template. The reflective spectrum of the sample has remarkable optical reflective peaks and shows the photonic band gap effects. The center wavelength of the photonic band gap lies in 1650nm and 2640nm. There is good agreement between the measured spectra and the calculated band structure. Germanium was also deposited on the SU-8 film, this shows that the SU-8 photoresist can with stand the deposition temperature. Low temperature deposition method decreases the deposition temperature. So this method can use macromolecule materials as templates. Thus the three-dimensional photonic crystal with more kinds of structure can be obtained by single-inversion procedure.-
Keywords:
- germanium inverse opal photonic crystal /
- low temperature plasma enhanced chemical vapour deposition /
- macromolecule materials /
- photonic band gap
[1] [1]Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] [2]John S 1987 Phys. Rev. Lett. 58 2486
[3] [3]Krauss T F, De La Rue R M, Brand S 1996 Nat. 383 699
[4] [4]Birner A, Mubller, F, Gruning U 1998 Phys. Stat. Sol. (a) 165 111
[5] [5]Campbell M, Sharp D, Harrison M T, Denning R G, Turberfield A J 2000 Nat. 404 53
[6] [6]Deubel M, Freymann G V, Wegener M, Pereira S, Busch K, Soukoulis C M 2004 Nat. Mater. 3 444
[7] [7]Zhong Y C, Zhu S A, Wang H Z, Zeng Z H, Chen Y L 2006 Acta Phy. Sin. 55 688 (in Chinese)[钟永春、朱少安、汪河洲、曾兆华 陈用烈 2006 55 688]
[8] [8]Xia Y N, Gates B, Yin Y D, Lu Y 2000 Adv. Mater. 12 693
[9] [9]Jenekhe S A, Chen X L 1999 Sci. 283 372
[10] ]Tétreault N, Freymann G V, Deubel M, Hermatschweiler M, Pérez-Willard F, John S, Wegener M, Ozin G A 2006 Adv. Mater. 18 457
[11] ]Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard S W 2000 Nat. 405 437
[12] ]Vlasov Y A, Bo X, Sturm J C, Norris D 2001 Nat. 414 289
[13] ]Li Y J, Xie K, Xu J, Long Y F 2006 Mater. Rev. 20 129[李宇杰、谢凯、许静、龙永福 2006 材料导报 20 129]
[14] ]García-Santamaría F, Ibisate M, Rodríguez I, Meseguer F, López C 2003 Adv. Mater. 15 788
[15] ]Míguez H, Chomski E, García-Santamaría F, Ibisate M, John S, López C, Meseguer F, Mondia J P, Ozin G A, Toader O, Van Driel H M 2001 Adv. Mater. 13 1634
[16] ]Yang M J, Shieh J, Hsu S L, Huang I J, Leu C C, Shen S W, Huang T Y, Lehnen P, Chien C H 2005 Solid-State Electrochem. Lett. 8 C74
[17] ]Ou H, R T P, Rdam, Rottwitt K, Grumsen F, Horsewell A, Berg R W 2007 Appl. phys. B: Lasers and Optics b 87 327
[18] ]Carrion M N P, Bottechia J P, Pereyra I 1997 Thin Solid Films 308-309 219
[19] ]Tian M B 2006 Thin Film Technologies and Materials (Beijing: Tstinghua University Press) p198 (in Chinese)[田民波 2006 薄膜技术与薄膜材料(北京: 清华大学出版社) 第198页]
-
[1] [1]Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] [2]John S 1987 Phys. Rev. Lett. 58 2486
[3] [3]Krauss T F, De La Rue R M, Brand S 1996 Nat. 383 699
[4] [4]Birner A, Mubller, F, Gruning U 1998 Phys. Stat. Sol. (a) 165 111
[5] [5]Campbell M, Sharp D, Harrison M T, Denning R G, Turberfield A J 2000 Nat. 404 53
[6] [6]Deubel M, Freymann G V, Wegener M, Pereira S, Busch K, Soukoulis C M 2004 Nat. Mater. 3 444
[7] [7]Zhong Y C, Zhu S A, Wang H Z, Zeng Z H, Chen Y L 2006 Acta Phy. Sin. 55 688 (in Chinese)[钟永春、朱少安、汪河洲、曾兆华 陈用烈 2006 55 688]
[8] [8]Xia Y N, Gates B, Yin Y D, Lu Y 2000 Adv. Mater. 12 693
[9] [9]Jenekhe S A, Chen X L 1999 Sci. 283 372
[10] ]Tétreault N, Freymann G V, Deubel M, Hermatschweiler M, Pérez-Willard F, John S, Wegener M, Ozin G A 2006 Adv. Mater. 18 457
[11] ]Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard S W 2000 Nat. 405 437
[12] ]Vlasov Y A, Bo X, Sturm J C, Norris D 2001 Nat. 414 289
[13] ]Li Y J, Xie K, Xu J, Long Y F 2006 Mater. Rev. 20 129[李宇杰、谢凯、许静、龙永福 2006 材料导报 20 129]
[14] ]García-Santamaría F, Ibisate M, Rodríguez I, Meseguer F, López C 2003 Adv. Mater. 15 788
[15] ]Míguez H, Chomski E, García-Santamaría F, Ibisate M, John S, López C, Meseguer F, Mondia J P, Ozin G A, Toader O, Van Driel H M 2001 Adv. Mater. 13 1634
[16] ]Yang M J, Shieh J, Hsu S L, Huang I J, Leu C C, Shen S W, Huang T Y, Lehnen P, Chien C H 2005 Solid-State Electrochem. Lett. 8 C74
[17] ]Ou H, R T P, Rdam, Rottwitt K, Grumsen F, Horsewell A, Berg R W 2007 Appl. phys. B: Lasers and Optics b 87 327
[18] ]Carrion M N P, Bottechia J P, Pereyra I 1997 Thin Solid Films 308-309 219
[19] ]Tian M B 2006 Thin Film Technologies and Materials (Beijing: Tstinghua University Press) p198 (in Chinese)[田民波 2006 薄膜技术与薄膜材料(北京: 清华大学出版社) 第198页]
计量
- 文章访问数: 8931
- PDF下载量: 1275
- 被引次数: 0