搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温等离子体增强化学气相沉积法制备Ge反opal三维光子晶体及其光学性能

李宇杰 谢凯 李效东 许静 韩喻 杜盼盼

引用本文:
Citation:

低温等离子体增强化学气相沉积法制备Ge反opal三维光子晶体及其光学性能

李宇杰, 谢凯, 李效东, 许静, 韩喻, 杜盼盼

Fabrication of germanium inverse opal three-dimensional photonic crystal by low temperature plasma enhanced chemical vapour deposition techniques and optical properties

Li Yu-Jie, Xie Kai, Li Xiao-Dong, Xu Jing, Han Yu, Du Pan-Pan
PDF
导出引用
  • 通过溶剂蒸发对流自组装法制备SiO2三维有序胶体晶体模板,采用等离子体增强化学气相沉积法在200℃低温条件下填充高折射率材料Ge,获得了Ge反opal三维光子晶体.实现了低于GeH4热分解温度的低温填充.通过扫描电镜、X射线衍射仪和傅里叶变换显微红外光谱仪对Ge反opal的形貌、成分和光学性能进行了表征.结果表明:沉积得到无定型态Ge,退火后形成多晶Ge,Ge在SiO2微球空隙内填充致密均匀.Ge反opal的反射光谱有明显的光学反射峰,表现
    By the solvent vaporization convection self-assembly method, silica colloidal crystal template was prepared. At 200℃, using GeH4 as the precursor gas, plasma enhanced chemical vapour deposition method was then used to fill the high refractive index material germanium, and germanium inverse opal photonic crystal was obtained. At the temperature lower than the temperature of thermal decomposition, GeH4 filling of germanium is realized. The morphology, composition, and optical property of the resulting samples were characterized by scanning electron microscopy, X-ray diffraction and Fourier transform microscopic IR spectroscopy. Results show that of germanium is amorphous, it is transformed into polycrystalline state by annealing. The germanium is homogeneously distributed inside the voids of silica template. The reflective spectrum of the sample has remarkable optical reflective peaks and shows the photonic band gap effects. The center wavelength of the photonic band gap lies in 1650nm and 2640nm. There is good agreement between the measured spectra and the calculated band structure. Germanium was also deposited on the SU-8 film, this shows that the SU-8 photoresist can with stand the deposition temperature. Low temperature deposition method decreases the deposition temperature. So this method can use macromolecule materials as templates. Thus the three-dimensional photonic crystal with more kinds of structure can be obtained by single-inversion procedure.
    • 基金项目: 国家重点基础研究发展计划(973)项目(批准号:5130702002)资助的课题.
    [1]

    [1]Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    [2]John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    [3]Krauss T F, De La Rue R M, Brand S 1996 Nat. 383 699

    [4]

    [4]Birner A, Mubller, F, Gruning U 1998 Phys. Stat. Sol. (a) 165 111

    [5]

    [5]Campbell M, Sharp D, Harrison M T, Denning R G, Turberfield A J 2000 Nat. 404 53

    [6]

    [6]Deubel M, Freymann G V, Wegener M, Pereira S, Busch K, Soukoulis C M 2004 Nat. Mater. 3 444

    [7]

    [7]Zhong Y C, Zhu S A, Wang H Z, Zeng Z H, Chen Y L 2006 Acta Phy. Sin. 55 688 (in Chinese)[钟永春、朱少安、汪河洲、曾兆华 陈用烈 2006 55 688]

    [8]

    [8]Xia Y N, Gates B, Yin Y D, Lu Y 2000 Adv. Mater. 12 693

    [9]

    [9]Jenekhe S A, Chen X L 1999 Sci. 283 372

    [10]

    ]Tétreault N, Freymann G V, Deubel M, Hermatschweiler M, Pérez-Willard F, John S, Wegener M, Ozin G A 2006 Adv. Mater. 18 457

    [11]

    ]Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard S W 2000 Nat. 405 437

    [12]

    ]Vlasov Y A, Bo X, Sturm J C, Norris D 2001 Nat. 414 289

    [13]

    ]Li Y J, Xie K, Xu J, Long Y F 2006 Mater. Rev. 20 129[李宇杰、谢凯、许静、龙永福 2006 材料导报 20 129]

    [14]

    ]García-Santamaría F, Ibisate M, Rodríguez I, Meseguer F, López C 2003 Adv. Mater. 15 788

    [15]

    ]Míguez H, Chomski E, García-Santamaría F, Ibisate M, John S, López C, Meseguer F, Mondia J P, Ozin G A, Toader O, Van Driel H M 2001 Adv. Mater. 13 1634

    [16]

    ]Yang M J, Shieh J, Hsu S L, Huang I J, Leu C C, Shen S W, Huang T Y, Lehnen P, Chien C H 2005 Solid-State Electrochem. Lett. 8 C74

    [17]

    ]Ou H, R T P, Rdam, Rottwitt K, Grumsen F, Horsewell A, Berg R W 2007 Appl. phys. B: Lasers and Optics b 87 327

    [18]

    ]Carrion M N P, Bottechia J P, Pereyra I 1997 Thin Solid Films 308-309 219

    [19]

    ]Tian M B 2006 Thin Film Technologies and Materials (Beijing: Tstinghua University Press) p198 (in Chinese)[田民波 2006 薄膜技术与薄膜材料(北京: 清华大学出版社) 第198页]

  • [1]

    [1]Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    [2]John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    [3]Krauss T F, De La Rue R M, Brand S 1996 Nat. 383 699

    [4]

    [4]Birner A, Mubller, F, Gruning U 1998 Phys. Stat. Sol. (a) 165 111

    [5]

    [5]Campbell M, Sharp D, Harrison M T, Denning R G, Turberfield A J 2000 Nat. 404 53

    [6]

    [6]Deubel M, Freymann G V, Wegener M, Pereira S, Busch K, Soukoulis C M 2004 Nat. Mater. 3 444

    [7]

    [7]Zhong Y C, Zhu S A, Wang H Z, Zeng Z H, Chen Y L 2006 Acta Phy. Sin. 55 688 (in Chinese)[钟永春、朱少安、汪河洲、曾兆华 陈用烈 2006 55 688]

    [8]

    [8]Xia Y N, Gates B, Yin Y D, Lu Y 2000 Adv. Mater. 12 693

    [9]

    [9]Jenekhe S A, Chen X L 1999 Sci. 283 372

    [10]

    ]Tétreault N, Freymann G V, Deubel M, Hermatschweiler M, Pérez-Willard F, John S, Wegener M, Ozin G A 2006 Adv. Mater. 18 457

    [11]

    ]Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard S W 2000 Nat. 405 437

    [12]

    ]Vlasov Y A, Bo X, Sturm J C, Norris D 2001 Nat. 414 289

    [13]

    ]Li Y J, Xie K, Xu J, Long Y F 2006 Mater. Rev. 20 129[李宇杰、谢凯、许静、龙永福 2006 材料导报 20 129]

    [14]

    ]García-Santamaría F, Ibisate M, Rodríguez I, Meseguer F, López C 2003 Adv. Mater. 15 788

    [15]

    ]Míguez H, Chomski E, García-Santamaría F, Ibisate M, John S, López C, Meseguer F, Mondia J P, Ozin G A, Toader O, Van Driel H M 2001 Adv. Mater. 13 1634

    [16]

    ]Yang M J, Shieh J, Hsu S L, Huang I J, Leu C C, Shen S W, Huang T Y, Lehnen P, Chien C H 2005 Solid-State Electrochem. Lett. 8 C74

    [17]

    ]Ou H, R T P, Rdam, Rottwitt K, Grumsen F, Horsewell A, Berg R W 2007 Appl. phys. B: Lasers and Optics b 87 327

    [18]

    ]Carrion M N P, Bottechia J P, Pereyra I 1997 Thin Solid Films 308-309 219

    [19]

    ]Tian M B 2006 Thin Film Technologies and Materials (Beijing: Tstinghua University Press) p198 (in Chinese)[田民波 2006 薄膜技术与薄膜材料(北京: 清华大学出版社) 第198页]

  • [1] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输.  , 2022, 71(3): 038501. doi: 10.7498/aps.71.20211299
    [2] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输研究.  , 2021, (): . doi: 10.7498/aps.70.20211299
    [3] 吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强. 含双曲超构材料的复合周期结构的带隙调控及应用.  , 2020, 69(15): 154205. doi: 10.7498/aps.69.20200084
    [4] 杨柳, 郜中星, 薛冰, 张勇刚, 蔡永茂. 基于自发辐射相干效应的可调光子带隙反射率的提高方法.  , 2018, 67(23): 234204. doi: 10.7498/aps.67.20181374
    [5] 程兰, 罗兴, 韦会峰, 李海清, 彭景刚, 戴能利, 李进延. 1550 nm低损耗单模全固态光子带隙光纤研究.  , 2014, 63(7): 074210. doi: 10.7498/aps.63.074210
    [6] 巴诺, 王磊, 张岩. 一维冷原子晶格中相干诱导三光子带隙.  , 2014, 63(3): 034209. doi: 10.7498/aps.63.034209
    [7] 武继江, 高金霞. 含特异材料一维超导光子晶体的带隙特性研究.  , 2013, 62(12): 124102. doi: 10.7498/aps.62.124102
    [8] 程胜飞, 彭景刚, 李进延, 程兰, 蒋作文, 李海清, 戴能利, 姜发刚, 杨晓波. 空芯光子晶体光纤表面模损耗控制的研究.  , 2012, 61(24): 244207. doi: 10.7498/aps.61.244207
    [9] 栗岩锋, 胡晓堃, 王爱民. 基于高折射率断环结构的全固光子带隙光纤的设计.  , 2011, 60(6): 064212. doi: 10.7498/aps.60.064212
    [10] 亓丽梅, 杨梓强, 兰峰, 高喜, 史宗君, 梁正. 二维色散和各向异性磁化等离子体光子晶体色散特性研究.  , 2010, 59(1): 351-359. doi: 10.7498/aps.59.351
    [11] 赵明明, 吕燕伍, 余家新, 庞许倩. 旋转对二维正方晶格介质柱内空结构光子晶体禁带的影响.  , 2008, 57(2): 1061-1065. doi: 10.7498/aps.57.1061
    [12] 米 艳, 侯蓝田, 周桂耀, 王 康, 陈 超, 高 飞, 刘博文, 胡明列. 空芯光子晶体光纤光子带隙的测量与数值模拟.  , 2008, 57(6): 3583-3587. doi: 10.7498/aps.57.3583
    [13] 李 蓉, 程 阳, 崔丽彬, 朱 峰, 周 静, 刘大禾, 刘 守, 张向苏. 晶格数目对面心立方结构光子晶体带隙的影响.  , 2006, 55(1): 188-191. doi: 10.7498/aps.55.188
    [14] 顾建忠, 林水洋, 王 闯, 喻筱静, 孙晓玮. 基于补偿型微带谐振单元的一维光子带隙结构.  , 2006, 55(8): 4176-4180. doi: 10.7498/aps.55.4176
    [15] 关春颖, 苑立波. 六角蜂窝结构光子晶体异质结带隙特性研究.  , 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [16] 周 梅, 陈效双, 徐 靖, 曾 勇, 吴砚瑞, 陆 卫, 王连卫, 陈 瑜. 中红外波段硅基两维光子晶体的光子带隙.  , 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
    [17] 周 梅, 陈效双, 徐 靖, 陆 卫. 硅基两维光子晶体的制备和光子带隙特性.  , 2004, 53(10): 3583-3586. doi: 10.7498/aps.53.3583
    [18] 张海涛, 巩马理, 王东生, 李 伟, 赵达尊. 群论在光子带隙计算中的应用.  , 2004, 53(7): 2060-2064. doi: 10.7498/aps.53.2060
    [19] 何拥军, 苏惠敏, 唐芳琼, 董鹏, 汪河洲. 准完全带隙胶体非晶光子晶体.  , 2001, 50(5): 892-896. doi: 10.7498/aps.50.892
    [20] 王辉, 李永平. 用特征矩阵法计算光子晶体的带隙结构.  , 2001, 50(11): 2172-2178. doi: 10.7498/aps.50.2172
计量
  • 文章访问数:  8931
  • PDF下载量:  1275
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-03-23
  • 修回日期:  2009-07-27
  • 刊出日期:  2010-03-15

/

返回文章
返回
Baidu
map