-
As a novel hybrid quantum system, cavity optomechanical system shows super strong coupling strength, extremely low noise level and considerable coherent time under superconducting condition. In this paper, we briefly introduce basic principles of cavity optomechanics and cavity optomechanical systems. Meanwhile, we also classify the widely studied cavity optomechanical systems as five categories in their materials and structures. Significant parameters of these optomechanical systems, such as quality factor, mass and vibrating frequency of mechanical oscillator, are listed in detail. Technical merits and defects of these optomechanical systems are summarized. Furthermore, we introduce the research progress of non-classical microwave quantum states preparation by utilizing generalized cavity optomechanical systems, and we also analyze the performance advancements and remaining problems of this preparation method. In the end, we summarize the application cases at present and look forward to the potential application scenarios in the future. Our summary may be helpful for researchers who are focusing on quantum applications in sensing, radar, navigation, and communication in microwave domain.
-
Keywords:
- cavityoptomechanical system /
- non-classical microwave quantum states /
- microwave-optical entanglement /
- electro-opto-mechanical converter
[1] Walls D F 1983 Nature 306 141Google Scholar
[2] Tara K, Agarwal G S 1994 Phys. Rev. A 50 2870Google Scholar
[3] Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar
[4] Liu C C, Wang D, Sun W Y, Ye L 2017 Quantum Inf. Process. 16 219Google Scholar
[5] Bennett C H 1992 Phys. Rev. Lett. 68 3121Google Scholar
[6] Hillery M, Buzek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar
[7] Gonzalez E A R, Borne A, Boulanger B, Levenson J A, Bencheikh K 2018 Phys. Rev. Lett. 120 043601Google Scholar
[8] Gatti L N, Lacalle J 2018 Quantum Inf. Process. 17 192Google Scholar
[9] Li Q, Li Z L, Chan W H, Zhang S Y, Liu C D 2018 Phys. Lett. A 382 938Google Scholar
[10] Lloyd S 2008 Science 321 1433
[11] McKinney J D 2014 Nature 507 310Google Scholar
[12] Lariontsev E G, ZolotoverkhI I 2002 J. Opt. B: Quantum Semiclass. Opt. 4 15Google Scholar
[13] Kok P, NemotoK, RalphTC, DowlingJP, MilburnGJ 2007 Rev. Mod. Phys. 79 135Google Scholar
[14] Fürst M, Weier H, Nauerth S, Marangon D G, Weinfurter H 2010 Opt. Express 18 13029Google Scholar
[15] Cialdi S, Rossi M A C, Benedetti C, Vacchini B, Tamascelli D, Olivares S 2017 Appl. Phys. Lett. 110 081107Google Scholar
[16] Henty B E, Stancil D D 2004 Phys. Rev. Lett. 93 243904Google Scholar
[17] Liu F Y, Yu X L, Liang P, Cheng Z G, Han Z Y, Dong B W 2012 Eur. J. Radiol. 81 1455Google Scholar
[18] Panzer B, Gomez-Garcia D, Leuschen C, Paden J, Rodriguez-Morales F, Patel A 2013 J. Glaciol. 59 244Google Scholar
[19] Guo B, Wang Y, Li J, Stoica P, Wu R 2006 J. Electromagnet. Wave. 20 53Google Scholar
[20] Mallet F, Castellanos-Beltran M A, Ku H S, Glancy S, Lehnert K W 2011 Phys. Rev. Lett. 106 220502Google Scholar
[21] Kurpiers P, Magnard P, Walter T, Royer B, Wallraff A 2018 Nature 558 7709
[22] Filippov S N, Man’ko V I 2012 Opt. Spectrosc. 112 365Google Scholar
[23] Eichler C, Bozyigit D, Lang C, Steffen L, Fink J, Wallraff A 2011 Phys. Rev. Lett. 106 220503Google Scholar
[24] Hofheinz M, Huard B, Portier F 2016 C.R.Physique 17 679Google Scholar
[25] Singh V, Bosman S J, Schneider B H, Blanter Y M, Castellanos-Gomez A, Steele G A 2014 Nat. Nanotechnol. 9 820Google Scholar
[26] Boner P J 2006 Nuncius. 21 31Google Scholar
[27] Maxwell J C 1873 Nature 7 478Google Scholar
[28] Lebedew P 1901 Ann. Phys. 311 433Google Scholar
[29] Nichols E F, Hull G F 1903 Ann. Phys. 12 225
[30] Meystre P 2013 Ann. Phys-Berlin. 523 215
[31] Braginsky V B, Manukin A B 1967 Sov. Phys JETP. 25 653
[32] Dorsel A, McCullen J D, Meystre P, Vignes E, Walther H 1983 Phys. Rev. Lett. 51 1550Google Scholar
[33] Fabre C, Pinard M, Bourzeix S, Heidmann A, Giacobino E, Reynaud S 1994 Phys. Rev. A 49 1337Google Scholar
[34] Barish B C, Weiss R 1999 Phys. Today 52 44
[35] Schliesser A, Riviere R, Anetsberger G, Arcizet O, Kippenberg T J 2008 Nat. Phys. 4 415Google Scholar
[36] Marquardt F, Harris J G E, Girvin S M 2006 Phys. Rev. Lett. 96 103901Google Scholar
[37] Carmon T, Cross M C, Vahala K J 2007 Phys. Rev. Lett. 98 167203Google Scholar
[38] Binnig G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930Google Scholar
[39] Kippenberg T J, Vahala K J 2008 Science 321 1172Google Scholar
[40] Chen B, Jiang C, Li J J, Zhu K D 2011 Phys. Rev. A 84 055802Google Scholar
[41] Perot A, Fabry C 1899 Bull. Astronomique 16 5
[42] Zhang J, Peng K, Braunstein S L 2003 Phys. Rev. A 68 013808Google Scholar
[43] Vitali D, Mancini S, Tombesi P 2007 J. Phys A-Math. Theor. 40 8055Google Scholar
[44] Wilson D J, Regal C A, Papp S B, Kimble H J 2009 Phys. Rev. Lett. 103 207204Google Scholar
[45] Bitarafan M H, Ramp H, Allen T W, Potts C, Rojas X, MacDonald A J R, Davis J P, Decorby R G 2015 J. Opt. Soc. Am. B 32 1214Google Scholar
[46] Pontin A, Mourounas L S, Geraci A A, Barker P F 2018 New J. Phys. 20 023017Google Scholar
[47] Delić U, Grass D, Reisenbauer M, Damm T, Weitz M, Kiesel N, Aspelmeyer M 2019 arXiv: 1902.06605
[48] Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925Google Scholar
[49] Hossein-Zadeh M, Rokhsari H, Hajimiri A, Vahala K J 2006 Phys. Rev. A 74 023813Google Scholar
[50] Henze R, Pyrlik C, Thies A, Ward J M, Wicht A, Benson O 2013 Appl. Phys. Lett. 102 041104Google Scholar
[51] Kavungal V, Farrell G, Wu Q, Mallik A K, Semenova Y 2017 J. Lightwave Technol. 36 1757
[52] Choi H, Chen D Y, Du F, Zeto R, Armani A 2019 Photonics Res. 7 926Google Scholar
[53] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72Google Scholar
[54] Jayich A M, Harris J G E, Sankey J C, Yang C, Zwickl B M 2010 Nat. Phys. 6 707Google Scholar
[55] Wang C, Lin Q, He B 2019 Phys. Rev. A 99 023829Google Scholar
[56] Painter O, Vuckovic J, Scherer A 1999 J. Opt. Soc. Am. B 16 275Google Scholar
[57] Eichenfield M, Camacho R, Chan J, Vahala K J, Painter O 2009 Nature 459 550Google Scholar
[58] Safavi-Naeini A H, Hill J T, MeenehanS M, Chan J, Groblacher S, Painter O 2014 Phys. Rev. Lett. 112 153603Google Scholar
[59] Burek M J, Cohen J D, Meenehan S M, El-Sawah N, Chia C, Ruelle T, Meesala S, Rochman J, Atikian H A, Markham M, Twitchen D J, Lukin M D, Painter O, Lončar M 2015 Optica 3 1404
[60] Riedinger R, Wallucks A, Marinković I, Löschnauer C, Aspelmeyer M, Hong S, Gröblacher S 2018 Nature 556 473Google Scholar
[61] Rajasekar R, Robinson S 2019 Plasmonics 14 3Google Scholar
[62] Regal C A, Teufel J D, Lehnert K W 2008 Nat. Phys. 4 555Google Scholar
[63] Teufel J D, Li D, Allman M S, Cicak K, Simmonds R W 2011 Nature 471 204Google Scholar
[64] Fink J M, Kalaee M, Pitanti A, Norte R, Heinzle L, Davanco M, Srinivasan K, Painter O 2016 Nat. Commun. 7 12396Google Scholar
[65] Li Y C, Tang J S, Jiang J L, Pan J Z, Dai X, Wei X Y, Lu Y P, Lu S, Tu X C, Wang H B, Xia K Y, Sun G Z, Wu P H 2019 AIP Adv. 9 015029Google Scholar
[66] Bienfait A, Satzinger K J, Zhong Y P, Chang H S, Chou M H, Conner C R, Dumur É, Grebel J, Peairs G A, Povey R G, Cleland A N 2019 Science 364 368Google Scholar
[67] Meschede D, Walther H, Müller G 1985 Phys. Rev. Lett. 54 551Google Scholar
[68] Haroche S 2013 Rev. Mod. Phys. 85 1083Google Scholar
[69] Haroche S, Kleppner D 1989 Phys. Today 42 24
[70] Yurke B, Kaminsky P G, Miller R E, Whittaker E A, Smith A D, Silver A H, Simon R W 1988 Phys. Rev. Lett. 60 764Google Scholar
[71] Martinis J M, Devoret M H, Clarke J 1985 Phys. Rev. Lett. 55 1543Google Scholar
[72] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162Google Scholar
[73] Ku H S, Mallet F, Vale L R, Irwin K D, Russek S E, Hilton G C, Lehnert K W 2011 IEEE T. Appl. Supercon. 21 452Google Scholar
[74] Ku H S, Kindel W F, Mallet F, Glancy S, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2015 Phys. Rev. A 91 042305Google Scholar
[75] Li P B, Gao S Y, Li F L 2013 Phys. Rev. A 88 0438021
[76] PalomakiTA, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710Google Scholar
[77] Sete E A, Eleuch H 2014 Phys. Rev. A 89 013841Google Scholar
[78] Ockeloen-Korppi C F, Damskagg E, Pirkkalainen J M, Heikkilä T T, Massel F, Sillanpää M A 2017 Phys. Rev. Lett. 118 103601Google Scholar
[79] Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J. H, Pirandola S 2015 Phys. Rev. Lett. 114 080503Google Scholar
[80] Aggarwal N, Debnath K, Mahajan S 2014 Int. J. Quantum Inf. 12 14500241
[81] Pan G X, Xiao R J, Zhou L 2016 Int. J. Theor. Phys. 55 329Google Scholar
[82] Tian L 2015 Ann. Phys.-Berlin 527 1Google Scholar
[83] TianL 2013 Phys. Rev. Lett. 110 233602Google Scholar
[84] Andrews R W, Regal C A 2014 Nat. Phys. 114 080503
[85] Abdi M, Tombesi P, Vitali D 2015 Ann. Phys.-Berlin 527 139Google Scholar
[86] Huang S M 2015 Phys. Rev. A 92 043845Google Scholar
[87] Xiong B, Li X, Wang X Y, Zhou L 2017 Ann. Phys.-New York 385 757Google Scholar
[88] Higginbotham A P, Burns P S, Urmey M D, Peterson R W, Kampel N S, Brubaker B M, Smith G, Lehnert K W, Regal C A 2018 Nat. Phys. 14 1038Google Scholar
[89] Ma P C, Yan L L, Chen G B, Li X W, Liu S J, Zhan Y B 2018 Laser Phys. Lett. 15 035201Google Scholar
[90] Zhong C C, Wang Z X, Zou C L, Zhang M Z, Han X, Fu W, Xu M R, Shankar S, Devoret M H, Tang H X, Jiang L 2019 arXiv: 1901.08228 v1[quant-ph]
[91] Wang Y D, Clerk A A 2012 Phys. Rev. Lett. 108 153603Google Scholar
[92] Li B, Li P B, Zhou Y, Ma S L, Li F L 2017 Phys. Rev. A 96 032342Google Scholar
[93] LaHaye M D 2004 Science 304 74Google Scholar
[94] 陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 64 164211Google Scholar
Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211Google Scholar
[95] Han Y, Cheng J, Zhou L 2012 J. Mod. Optic. 59 1336Google Scholar
[96] Qi T, Han Y, Zhou L 2013 J. Mod. Optic. 60 431Google Scholar
[97] Akram M J, Ghafoor F, Saif F 2014 J. Phys. B-At. Mol. Opt. 48 65502
[98] Tsang M 2010 Phys. Rev. A 81 063837Google Scholar
[99] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359Google Scholar
[100] Threepak T, Luangvilay X, Mitatha S, Yupapin P P 2010 Microw. Opt. Techn. Lett. 52 1353Google Scholar
-
表 1 5种主要腔光力系统的研究现状总结
Table 1. Summary for current research states of 5 main cavity optomechanical systems.
类别 品质因数水平 振子质量水平 振子频率水平 优势 不足 法布里-珀罗腔 104 kg—pg kHz—MHz 技术成熟, 应用广泛 品质因数水平较低, 耗散较大、不易集成 回音壁腔 109 (微球腔)
108 (微环腔)ng—fg MHz—GHz 光力耦合度高, 构造灵活,
腔内光子寿命长工艺要求高、成本高 振动薄膜腔 105 pg MHz 结构简单、灵活 耗散较大、不易集成 光子晶体腔 106 fg GHz 可利用自由度多, 片上可扩展
性好, 精确的模式控制工艺复杂 超导微波腔 107 pg MHz 可高度集成, 与超导器件兼容,
腔的稳定性好, 热噪声水平低超低温, 电磁噪声谱较宽 表 2 基于腔光力系统的微波非经典量子态制备
Table 2. Preparations of non-classical quantum statesof microwave based on cavity opto-mechanical system
腔光力系统类型 作用类型 模式数 腔类型 制备的微波非经典量子态 腔电力系统 光子-声子 2 微波腔 连续变量微波纠缠态, 微波压缩态, 微波-机械
振子谐振模纠缠态腔电光力系统 光子-声子-光子 3 微波腔, 光腔 连续、离散变量微波纠缠态, 微波单光子Fock态,
微波-机械振子谐振模纠缠态, 微波-光纠缠态 -
[1] Walls D F 1983 Nature 306 141Google Scholar
[2] Tara K, Agarwal G S 1994 Phys. Rev. A 50 2870Google Scholar
[3] Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar
[4] Liu C C, Wang D, Sun W Y, Ye L 2017 Quantum Inf. Process. 16 219Google Scholar
[5] Bennett C H 1992 Phys. Rev. Lett. 68 3121Google Scholar
[6] Hillery M, Buzek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar
[7] Gonzalez E A R, Borne A, Boulanger B, Levenson J A, Bencheikh K 2018 Phys. Rev. Lett. 120 043601Google Scholar
[8] Gatti L N, Lacalle J 2018 Quantum Inf. Process. 17 192Google Scholar
[9] Li Q, Li Z L, Chan W H, Zhang S Y, Liu C D 2018 Phys. Lett. A 382 938Google Scholar
[10] Lloyd S 2008 Science 321 1433
[11] McKinney J D 2014 Nature 507 310Google Scholar
[12] Lariontsev E G, ZolotoverkhI I 2002 J. Opt. B: Quantum Semiclass. Opt. 4 15Google Scholar
[13] Kok P, NemotoK, RalphTC, DowlingJP, MilburnGJ 2007 Rev. Mod. Phys. 79 135Google Scholar
[14] Fürst M, Weier H, Nauerth S, Marangon D G, Weinfurter H 2010 Opt. Express 18 13029Google Scholar
[15] Cialdi S, Rossi M A C, Benedetti C, Vacchini B, Tamascelli D, Olivares S 2017 Appl. Phys. Lett. 110 081107Google Scholar
[16] Henty B E, Stancil D D 2004 Phys. Rev. Lett. 93 243904Google Scholar
[17] Liu F Y, Yu X L, Liang P, Cheng Z G, Han Z Y, Dong B W 2012 Eur. J. Radiol. 81 1455Google Scholar
[18] Panzer B, Gomez-Garcia D, Leuschen C, Paden J, Rodriguez-Morales F, Patel A 2013 J. Glaciol. 59 244Google Scholar
[19] Guo B, Wang Y, Li J, Stoica P, Wu R 2006 J. Electromagnet. Wave. 20 53Google Scholar
[20] Mallet F, Castellanos-Beltran M A, Ku H S, Glancy S, Lehnert K W 2011 Phys. Rev. Lett. 106 220502Google Scholar
[21] Kurpiers P, Magnard P, Walter T, Royer B, Wallraff A 2018 Nature 558 7709
[22] Filippov S N, Man’ko V I 2012 Opt. Spectrosc. 112 365Google Scholar
[23] Eichler C, Bozyigit D, Lang C, Steffen L, Fink J, Wallraff A 2011 Phys. Rev. Lett. 106 220503Google Scholar
[24] Hofheinz M, Huard B, Portier F 2016 C.R.Physique 17 679Google Scholar
[25] Singh V, Bosman S J, Schneider B H, Blanter Y M, Castellanos-Gomez A, Steele G A 2014 Nat. Nanotechnol. 9 820Google Scholar
[26] Boner P J 2006 Nuncius. 21 31Google Scholar
[27] Maxwell J C 1873 Nature 7 478Google Scholar
[28] Lebedew P 1901 Ann. Phys. 311 433Google Scholar
[29] Nichols E F, Hull G F 1903 Ann. Phys. 12 225
[30] Meystre P 2013 Ann. Phys-Berlin. 523 215
[31] Braginsky V B, Manukin A B 1967 Sov. Phys JETP. 25 653
[32] Dorsel A, McCullen J D, Meystre P, Vignes E, Walther H 1983 Phys. Rev. Lett. 51 1550Google Scholar
[33] Fabre C, Pinard M, Bourzeix S, Heidmann A, Giacobino E, Reynaud S 1994 Phys. Rev. A 49 1337Google Scholar
[34] Barish B C, Weiss R 1999 Phys. Today 52 44
[35] Schliesser A, Riviere R, Anetsberger G, Arcizet O, Kippenberg T J 2008 Nat. Phys. 4 415Google Scholar
[36] Marquardt F, Harris J G E, Girvin S M 2006 Phys. Rev. Lett. 96 103901Google Scholar
[37] Carmon T, Cross M C, Vahala K J 2007 Phys. Rev. Lett. 98 167203Google Scholar
[38] Binnig G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930Google Scholar
[39] Kippenberg T J, Vahala K J 2008 Science 321 1172Google Scholar
[40] Chen B, Jiang C, Li J J, Zhu K D 2011 Phys. Rev. A 84 055802Google Scholar
[41] Perot A, Fabry C 1899 Bull. Astronomique 16 5
[42] Zhang J, Peng K, Braunstein S L 2003 Phys. Rev. A 68 013808Google Scholar
[43] Vitali D, Mancini S, Tombesi P 2007 J. Phys A-Math. Theor. 40 8055Google Scholar
[44] Wilson D J, Regal C A, Papp S B, Kimble H J 2009 Phys. Rev. Lett. 103 207204Google Scholar
[45] Bitarafan M H, Ramp H, Allen T W, Potts C, Rojas X, MacDonald A J R, Davis J P, Decorby R G 2015 J. Opt. Soc. Am. B 32 1214Google Scholar
[46] Pontin A, Mourounas L S, Geraci A A, Barker P F 2018 New J. Phys. 20 023017Google Scholar
[47] Delić U, Grass D, Reisenbauer M, Damm T, Weitz M, Kiesel N, Aspelmeyer M 2019 arXiv: 1902.06605
[48] Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925Google Scholar
[49] Hossein-Zadeh M, Rokhsari H, Hajimiri A, Vahala K J 2006 Phys. Rev. A 74 023813Google Scholar
[50] Henze R, Pyrlik C, Thies A, Ward J M, Wicht A, Benson O 2013 Appl. Phys. Lett. 102 041104Google Scholar
[51] Kavungal V, Farrell G, Wu Q, Mallik A K, Semenova Y 2017 J. Lightwave Technol. 36 1757
[52] Choi H, Chen D Y, Du F, Zeto R, Armani A 2019 Photonics Res. 7 926Google Scholar
[53] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72Google Scholar
[54] Jayich A M, Harris J G E, Sankey J C, Yang C, Zwickl B M 2010 Nat. Phys. 6 707Google Scholar
[55] Wang C, Lin Q, He B 2019 Phys. Rev. A 99 023829Google Scholar
[56] Painter O, Vuckovic J, Scherer A 1999 J. Opt. Soc. Am. B 16 275Google Scholar
[57] Eichenfield M, Camacho R, Chan J, Vahala K J, Painter O 2009 Nature 459 550Google Scholar
[58] Safavi-Naeini A H, Hill J T, MeenehanS M, Chan J, Groblacher S, Painter O 2014 Phys. Rev. Lett. 112 153603Google Scholar
[59] Burek M J, Cohen J D, Meenehan S M, El-Sawah N, Chia C, Ruelle T, Meesala S, Rochman J, Atikian H A, Markham M, Twitchen D J, Lukin M D, Painter O, Lončar M 2015 Optica 3 1404
[60] Riedinger R, Wallucks A, Marinković I, Löschnauer C, Aspelmeyer M, Hong S, Gröblacher S 2018 Nature 556 473Google Scholar
[61] Rajasekar R, Robinson S 2019 Plasmonics 14 3Google Scholar
[62] Regal C A, Teufel J D, Lehnert K W 2008 Nat. Phys. 4 555Google Scholar
[63] Teufel J D, Li D, Allman M S, Cicak K, Simmonds R W 2011 Nature 471 204Google Scholar
[64] Fink J M, Kalaee M, Pitanti A, Norte R, Heinzle L, Davanco M, Srinivasan K, Painter O 2016 Nat. Commun. 7 12396Google Scholar
[65] Li Y C, Tang J S, Jiang J L, Pan J Z, Dai X, Wei X Y, Lu Y P, Lu S, Tu X C, Wang H B, Xia K Y, Sun G Z, Wu P H 2019 AIP Adv. 9 015029Google Scholar
[66] Bienfait A, Satzinger K J, Zhong Y P, Chang H S, Chou M H, Conner C R, Dumur É, Grebel J, Peairs G A, Povey R G, Cleland A N 2019 Science 364 368Google Scholar
[67] Meschede D, Walther H, Müller G 1985 Phys. Rev. Lett. 54 551Google Scholar
[68] Haroche S 2013 Rev. Mod. Phys. 85 1083Google Scholar
[69] Haroche S, Kleppner D 1989 Phys. Today 42 24
[70] Yurke B, Kaminsky P G, Miller R E, Whittaker E A, Smith A D, Silver A H, Simon R W 1988 Phys. Rev. Lett. 60 764Google Scholar
[71] Martinis J M, Devoret M H, Clarke J 1985 Phys. Rev. Lett. 55 1543Google Scholar
[72] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162Google Scholar
[73] Ku H S, Mallet F, Vale L R, Irwin K D, Russek S E, Hilton G C, Lehnert K W 2011 IEEE T. Appl. Supercon. 21 452Google Scholar
[74] Ku H S, Kindel W F, Mallet F, Glancy S, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2015 Phys. Rev. A 91 042305Google Scholar
[75] Li P B, Gao S Y, Li F L 2013 Phys. Rev. A 88 0438021
[76] PalomakiTA, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710Google Scholar
[77] Sete E A, Eleuch H 2014 Phys. Rev. A 89 013841Google Scholar
[78] Ockeloen-Korppi C F, Damskagg E, Pirkkalainen J M, Heikkilä T T, Massel F, Sillanpää M A 2017 Phys. Rev. Lett. 118 103601Google Scholar
[79] Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J. H, Pirandola S 2015 Phys. Rev. Lett. 114 080503Google Scholar
[80] Aggarwal N, Debnath K, Mahajan S 2014 Int. J. Quantum Inf. 12 14500241
[81] Pan G X, Xiao R J, Zhou L 2016 Int. J. Theor. Phys. 55 329Google Scholar
[82] Tian L 2015 Ann. Phys.-Berlin 527 1Google Scholar
[83] TianL 2013 Phys. Rev. Lett. 110 233602Google Scholar
[84] Andrews R W, Regal C A 2014 Nat. Phys. 114 080503
[85] Abdi M, Tombesi P, Vitali D 2015 Ann. Phys.-Berlin 527 139Google Scholar
[86] Huang S M 2015 Phys. Rev. A 92 043845Google Scholar
[87] Xiong B, Li X, Wang X Y, Zhou L 2017 Ann. Phys.-New York 385 757Google Scholar
[88] Higginbotham A P, Burns P S, Urmey M D, Peterson R W, Kampel N S, Brubaker B M, Smith G, Lehnert K W, Regal C A 2018 Nat. Phys. 14 1038Google Scholar
[89] Ma P C, Yan L L, Chen G B, Li X W, Liu S J, Zhan Y B 2018 Laser Phys. Lett. 15 035201Google Scholar
[90] Zhong C C, Wang Z X, Zou C L, Zhang M Z, Han X, Fu W, Xu M R, Shankar S, Devoret M H, Tang H X, Jiang L 2019 arXiv: 1901.08228 v1[quant-ph]
[91] Wang Y D, Clerk A A 2012 Phys. Rev. Lett. 108 153603Google Scholar
[92] Li B, Li P B, Zhou Y, Ma S L, Li F L 2017 Phys. Rev. A 96 032342Google Scholar
[93] LaHaye M D 2004 Science 304 74Google Scholar
[94] 陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 64 164211Google Scholar
Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211Google Scholar
[95] Han Y, Cheng J, Zhou L 2012 J. Mod. Optic. 59 1336Google Scholar
[96] Qi T, Han Y, Zhou L 2013 J. Mod. Optic. 60 431Google Scholar
[97] Akram M J, Ghafoor F, Saif F 2014 J. Phys. B-At. Mol. Opt. 48 65502
[98] Tsang M 2010 Phys. Rev. A 81 063837Google Scholar
[99] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359Google Scholar
[100] Threepak T, Luangvilay X, Mitatha S, Yupapin P P 2010 Microw. Opt. Techn. Lett. 52 1353Google Scholar
计量
- 文章访问数: 12162
- PDF下载量: 331
- 被引次数: 0