搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面等离激元光热效应研究进展

王善江 苏丹 张彤

引用本文:
Citation:

表面等离激元光热效应研究进展

王善江, 苏丹, 张彤

Research progress of surface plasmons mediated photothermal effects

Wang Shan-Jiang, Su Dan, Zhang Tong
PDF
HTML
导出引用
  • 表面等离激元微纳结构能够将光场束缚在亚波长尺度, 实现突破光学衍射极限的光操控, 并显著增强光与物质的相互作用. 在基于表面等离激元机理的光电器件研究中, 微纳结构的自身光吸收通常被认为是损耗, 而通过光热效应, 光吸收则可有效利用并转换成热能, 其中的物理过程研究和应用是当前等离激元学领域的热点方向. 本文回顾了近年来表面等离激元微纳结构光热效应的相关工作, 聚焦于表面等离激元热效应的物理过程、热产生和热传导调控方式的研究进展. 在此基础上, 介绍了表面等离激元微纳结构在微纳加工、宽谱光热转换等方面的应用.
    Plasmonic nanostructure can efficiently manipulate light on a subwavelength scale, which can break through the optical diffraction limit and significantly enhance the interaction between light and matter. In the study of photoelectric devices based on the plasmonic mechanism, the absorption of light in surface plasmons is usually considered as loss, which needs to be suppressed. However, based on the photothermal effect, the light absorption of plasmonic nanostructure can be effectively utilized and converted into heat. The research of this new type of nano-heat source is a hot topic in the field of plasmonics. In this paper, we review the recent progress of the study of photothermal effects of plasmonic nanostructure, focusing on the physical process of heating effects, and the methods to control the temperature distribution in both the process of heat generation and the process of delivery of heat. Finally, the applications of nano-heat source in the fields of nano-fabrication and broad-spectrum photothermal conversion are also presented.
      通信作者: 张彤, tzhang@seu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2017YFA0205800)和国家自然科学基金(批准号: 61875241, 11734005)资助的课题.
      Corresponding author: Zhang Tong, tzhang@seu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0205800) and the National Natural Science Foundation of China (Grant Nos. 61875241, 11734005).
    [1]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403Google Scholar

    [2]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508Google Scholar

    [3]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629Google Scholar

    [4]

    Lal S, Link S, Halas N J 2007 Nat. Photon. 1 641Google Scholar

    [5]

    Tong L, Wei H, Zhang S, Xu H X 2014 Sensors 14 7959Google Scholar

    [6]

    Pan D, Wei H, Gao L, Xu H X 2016 Phys. Rev. Lett. 117 166803Google Scholar

    [7]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [8]

    High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, de Leon N P, Lukin M D, Park H 2015 Nature 522 192Google Scholar

    [9]

    Su D, Zhang X Y, Ma Y L, Shan F, Wu J Y, Fu X C, Zhang L J, Yuan K Q, Zhang T 2018 IEEE Photon. J. 10 1

    [10]

    Maier S A, Brongersma M L, Kik P G, Meltzer S, Requich A A G, Atwater H A 2001 Adv. Mater. 13 1501Google Scholar

    [11]

    Maier S A 2006 IEEE J. Sel. Top. Quant. 12 1214Google Scholar

    [12]

    Zhang T, Su D, Li R Z, Wang S J, Shan F, Xu J J, Zhang X Y 2016 J. Photon. Energy 6 042504Google Scholar

    [13]

    Govorov A O, Richardson H H 2007 Nano Today 2 30

    [14]

    Baffou G, Quidant R 2013 Laser Photon. Rev. 7 171Google Scholar

    [15]

    Boriskina S V, Cooper T A, Zeng L, Ni G, Tong J K, Tsurimaki Y, Huang Y, Meroueh L, Mahan G, Chen G 2017 Adv. Opt. Photon. 9 775Google Scholar

    [16]

    Hogan N J, Urban A S, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas N J 2014 Nano Lett. 14 4640Google Scholar

    [17]

    Roxworthy B J, Bhuiya A M, Vanka S P, Toussaint Jr K C 2014 Nat. Commun. 5 3173Google Scholar

    [18]

    Donner J S, Baffou G, McCloskey D, Quidant R 2011 ACS Nano 5 5457Google Scholar

    [19]

    Zoric I, Zach M, Kasemo B, Langhammer C 2011 ACS Nano 5 2535Google Scholar

    [20]

    Baffou G, Quidant R, Girard C 2009 Appl. Phys. Lett. 94 153109Google Scholar

    [21]

    Chen X, Chen Y, Yan M, Qiu M 2012 ACS Nano 6 2550Google Scholar

    [22]

    Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotech. 10 25Google Scholar

    [23]

    O’Brien K, Lanzillotti-Kimura N D, Rho J, Suchowski H, Yin X, Zhang X 2014 Nat. Commun. 5 4042Google Scholar

    [24]

    潘美妍, 李强, 仇旻 2016 物理 45 379Google Scholar

    Pan M Y, Li Q, Qiu M 2016 Physics 45 379Google Scholar

    [25]

    单杭永, 祖帅, 方哲宇 2017 激光与光电子学进展 54 030002

    Shan H Y, Zu S, Fang Z Y 2017 Laser & Optoelectronics Progress 54 030002

    [26]

    Bell A P, Fairfield J A, McCarthy E K, Mills S, Boland J J, Baffou G, McCloskey D 2015 ACS Nano 9 5551Google Scholar

    [27]

    Sanchot A, Baffou G, Marty R, Arbouet A, Quidant R, Girard C, Dujardin E 2012 ACS Nano 6 3434Google Scholar

    [28]

    Baffou G, Berto P, Bermúdez Ureña E, Quidant R, Monneret S, Polleux J, Rigneault H 2013 ACS Nano 7 6478Google Scholar

    [29]

    Liu H B, Ascencio J A, Perez-Alvarez M, Yacaman M J 2001 Surf. Sci. 491 88Google Scholar

    [30]

    Baffou G, Girard C, Quidant R 2010 Phys. Rev. Lett. 104 136805Google Scholar

    [31]

    Baffou G, Quidant R, García de Abajo F J 2010 ACS Nano 4 709Google Scholar

    [32]

    Li R Z, Hu A, Bridges D, Zhang T, Oake K D, Peng R, Tumuluri U, Wu Z, Feng Z 2015 Nanoscale 7 7368Google Scholar

    [33]

    Khosravi Khorashad L, Besteiro L V, Wang Z, Valentin J, Govorov A O 2016 J. Phys. Chem. C 120 13215Google Scholar

    [34]

    Liu Z, Li Q, Zhang W, Yang Y, Qiu M 2015 Plasmonics 10 911Google Scholar

    [35]

    Metwally K, Mensah S, Baffou G 2017 ACS Photon. 4 1544Google Scholar

    [36]

    Chen H, Shao L, Li Q, Wang J F 2013 Chem. Soc. Rev. 42 2679Google Scholar

    [37]

    Ma H, Tian P, Pello J, Bendix P M, Oddershede L B 2014 Nano Lett. 14 612Google Scholar

    [38]

    Boulais E, Lachaine R, Hatef A, Meunier M 2013 J. Photoch. Photobio. C: Photochem. Rev. 17 26Google Scholar

    [39]

    Peng P, Hu A, Gerlich A P, Zou G, Liu L, Zhou Y N 2015 ACS Appl. Mater. Inter. 7 12597Google Scholar

    [40]

    González-Rubio G, Guerrero-Martínez A, Liz-Marzán L M 2016 Accounts Chem. Res. 49 678Google Scholar

    [41]

    Catone D, Ciavardini A, Di Mario L, Paladini A, Toschi F, Cartoni A, Fratoddi I, Venditti I, Alabastri A, Proietti Zaccaria R, O’Keeffe P 2018 J. Phys. Chem. Lett. 9 5002Google Scholar

    [42]

    Schoenlein R W, Lin W Z, Fujimoto J G, Eesley G L 1987 Phys. Rev. Lett. 58 1680Google Scholar

    [43]

    Hu A, Rybachuk M, Lu Q B, Duley W W 2007 Appl. Phys. Lett. 91 131906Google Scholar

    [44]

    Xing S, Lin L, Zou G, Liu L, Peng P, Wu A, Duley W W, Zhou Y N 2017 Nanotechnology 28 405302Google Scholar

    [45]

    Li R Z, Peng R, Kihm K D, Bai S, Bridges D, Tumuluri U, Wu Z, Zhang T, Compagnini G, Feng Z, Hu A 2016 Energy Environ. Sci. 9 1458Google Scholar

    [46]

    Lim D K, Barhoumi A, Wylie R G, Reznor G, Langer R S, Kohane D S 2013 Nano Lett. 13 4075Google Scholar

    [47]

    Zolotavin P, Alabastri A, Nordlander P, Natelson D 2016 ACS Nano 10 6972Google Scholar

    [48]

    Herzog J B, Knight M W, Natelson D 2014 Nano Lett. 14 499Google Scholar

    [49]

    Meng L, Yu R, Qiu M, García de Abajo F J 2017 ACS Nano 11 7915Google Scholar

    [50]

    Garnett E C, Cai W, Cha J J, Mahmood F, Conno S T, Christoforo M G, Cui Y, McGehee1 M D, Brongersma M L 2012 Nat. Mater. 11 241Google Scholar

    [51]

    Hu A, Guo J Y, Alarifi H, Patane G, Zhou Y, Compagnini G, Xu C X 2010 Appl. Phys. Lett. 97 153117Google Scholar

    [52]

    Marzbanrad E, Hu A, Zhao B, Zhou Y 2013 J. Phys. Chem. C 117 16665Google Scholar

    [53]

    Yang C, Wong C P, Yuen M M F 2013 J. Mater. Chem. C 1 4052Google Scholar

    [54]

    Zhang X Y, Xu J J, Wu J Y, Shan F, Ma X D, Chen Y Z, Zhang T 2017 RSC Adv. 7 8Google Scholar

    [55]

    Yang H, Lu J, Ghosh P, Chen Z, Wang W, Ye H, Yu Q, Qiu M, Li Q 2018 Appl. Phys. Lett. 112 071108Google Scholar

    [56]

    Herrmann L O, Valev V K, Tserkezis C, Barnard J S, Kasera S, Scherman O A, Aizpurua J, Baumberg J J 2014 Nat. Commun. 5 4568Google Scholar

    [57]

    Li R Z, Hu A, Zhang T, Oakes K D 2014 ACS Appl. Mater. Inter. 6 21721Google Scholar

    [58]

    Fang L, Liu D, Wang Y, Li Y, Song L, Gong M, Li Y, Deng Z 2018 Nano Lett. 18 7014Google Scholar

    [59]

    González-Rubio G, Díaz-Núñez P, Rivera A, Prada A, Tardajos G, González-Izquierdo J, Bañares L, Llombart P, Macdowel L G, Palafox M A, Liz-Marzán L M, Peña-Rodríguez O, Guerrero-Martínez A 2017 Science 358 640Google Scholar

    [60]

    González-Rubio G, González-Izquierdo J, Bañares L, Tardajos G, Rivera A, Altantzis T, Bals S, Peña-Rodríguez O, Guerrero-Martínez A, Liz-Marzán L M 2015 Nano Lett. 15 8282Google Scholar

    [61]

    Eaton S M, Zhang H, Herman P R, Yoshino F, Shah L, Bovatsek J, Arai A Y 2005 Opt. Express 13 4708Google Scholar

    [62]

    Wang P 2018 Environ. Sci.: Nano 5 1078Google Scholar

    [63]

    Yang M Q, Gao M, Hong M, Ho G W 2018 Adv. Mater. 30 1802894Google Scholar

    [64]

    Gao M, Zhu L, Peh C K, Ho G W 2019 Energy Environ. Sci. 12 841Google Scholar

    [65]

    Zhang X Y, Shan F, Zhou H L, Su D, Xue X M, Wu J Y, Chen Y Z, Zhao N, Zhang T 2018 J. Mater. Chem. C 6 989Google Scholar

    [66]

    Gao M, Peh C K, Phan H T, Zhu L, Ho G W 2018 Adv. Energy Mater. 8 1800711Google Scholar

    [67]

    Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J 2016 Sci. Adv. 2 e1501227Google Scholar

    [68]

    Lin L, Peng X, Wang M, Scarabelli L, Mao Z, Liz-Marzán L M, Becker M F, Zheng Y 2016 ACS Nano 10 9659Google Scholar

    [69]

    Furube A, Hashimoto S 2017 NPG Asia Mater. 9 e454Google Scholar

    [70]

    Buscema M, Barkelid M, Zwiller V, van der Zant H S, Steele G A, Castellanos-Gomez A 2013 Nano Lett. 132 358

    [71]

    Echtermeyer T J, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2015 Nano Lett. 16 8

    [72]

    Zolotavin P, Evans C, Natelson D 2017 J. Phys. Chem. Lett. 8 1739Google Scholar

    [73]

    Heber A, Selmke M, Cichos F 2014 ACS Nano 8 1893Google Scholar

    [74]

    Chen X, Xia Q, Cao Y, Min Q, Zhang J, Chen Z, Chen H Y, Zhu J J 2017 Nat. Commun. 8 1498Google Scholar

    [75]

    Pellegrotti J V, Cortés E, Bordenave M D, Caldarola M, Kreuzer M P, Sanchez A D, Ojea I, Bragas A V, Stefani F D 2016 ACS Sensors 1 1351Google Scholar

    [76]

    Kamarudheen R, Castellanos G W, Kamp L P J, Clercx H J H, Baldi A 2018 ACS Nano 12 8447Google Scholar

    [77]

    Zhang X, Li X, Reish M E, Zhang D, Su N Q, Gutiérrez Y, Moreno F, Yang W, Everitt H O, Liu J 2018 Nano Lett. 18 1714Google Scholar

    [78]

    Zhou L, Swearer D F, Zhang C, Robatjazi H, Zhao H, Henderson L, Dong L, Christopher P, Carter E A, Nordlander P, Halas N J 2018 Science 362 69Google Scholar

    [79]

    Baffou G, Rigneault H, Marguet D, Jullien L 2014 Nat. Methods 11 899Google Scholar

    [80]

    Agrawal A, Singh A, Yazdi S, Singh A, Ong G K, Bustillo K, Johns R W, Ringe E, Milliron D J 2017 Nano Lett. 17 2611Google Scholar

    [81]

    Li X, Zhu J, Wei B 2016 Chem. Soc. Rev. 45 3145Google Scholar

    [82]

    Bernardi M, Mustafa J, Neaton J B, Louie S G 2015 Nat. Commun. 6 7044Google Scholar

    [83]

    Evans C I, Zolotavin P, Alabastri A, Yang J, Nordlanderet P, Natelson D 2017 Nano Lett. 17 5646Google Scholar

  • 图 1  表面等离激元弛豫产生热的过程及相应时间域 (a)−(d) 分别是表面等离激元激发(t = 0 s)、朗道阻尼(t = 1—100 fs)、热载流子弛豫(t = 100 fs—1 ps)及热耗散的过程(t = 100 ps—10 ns)[22]

    Fig. 1.  Process and time scale of heat generation from SPs decaying: (a)−(d) Illustrates the process of heat generation by excitation of SPs (t = 0 s), Landau damping (t = 1–100 fs), decaying of hot carriers (t = 100 fs–1 ps), and final heat diffusion to surroundings (t = 100 ps–10 ns)[22].

    图 2  (a) 直径为40 nm金纳米球; (b) 金纳米球电场分布特性, (c) 金纳米球热源密度分布; (d)金纳米球稳态条件下的温度场分布, 其中入射光波长为525 nm

    Fig. 2.  (a) The gold nanosphere with a diameter of 40 nm; (b) electromagnetic distribution of the gold nanosphere, (c) thermal density distribution of the gold nanosphere; (d) steady-state temperature field distribution of the gold nanosphere (the incident light wavelength is 525 nm).

    图 3  (a) 纳米光刻技术构建的多孔和无孔金三角板的热分布[28]; (b), (c) 金纳米球二聚体结构在不同偏振下的电磁分布和对应的热分布[29]; (d)不同激励波长下, 叠层银纳米板的热分布[30]; (e) 纳米星结构的热分布仿真结果[35]; (f), (g) 金纳米棒二聚体结构的热分布及相应的局域电场分布[28]

    Fig. 3.  (a) Thermal distribution of porous and non-porous gold nanoplates constructed by e-beam lithography[28]; (b), (c) electromagnetic distribution and corresponding thermal distribution of gold nanosphere dimers under different polarizations[29]; (d) thermal distribution of the tandem silver nanoplates at different excitation wavelengths[30]; (e) simulation of thermal distribution of star-shaped nanostructure[35]; (f), (g) thermal distribution and corresponding electromagnetic distribution of gold nanorod dimers[28].

    图 4  (a), (b) 金纳米壳(棒)、金纳米壳(棒)@氧化石墨烯(GO)以及金纳米壳(棒)@还原氧化石墨烯(rGO)的红外温度像及不同辐照时间下温度提升速率[46]; (c)−(e)金@硅多层壳结构、局域电场及其温度场分布[49]

    Fig. 4.  (a), (b) Infrared temperature images of gold nanoshells (nanorods), gold nanoshells (nanorods)@graphene oxide (GO), and gold nanoshells (nanorods)@reduced graphene oxide (RGO) and the temperature-rising rate under different irradiation time[46]; (c)−(e) gold@silicon multilayer shells structure and their electromagnetic distribution and temperature field distributions[49].

    图 5  (a)−(c) 飞秒激光诱导的光热微纳结构“塑形”, (a) 光谱线宽变化及(b), (c) 金纳米棒塑形后形貌基本保持不变[59]; (d)−(f) “热点”自组装机制及高分辨透射电镜成像[60]

    Fig. 5.  (a)−(c) The “shaping” of the nanostructure induced by femtosecond laser, (a) the spectral line width changes and (b), (c) the morphology of the gold nanorods remained basically unchanged after shaping[59]; (d)−(f) “hot spot” self-assembly process and high-resolution transmission electron microscopy imaging[60].

    图 6  (a) 宽谱光吸收原理图; (b) 金纳米星@多孔硅复合结构的宽谱光热转换器件[66]; (c) 金纳米球/三维多孔氧化铝复合结构的宽谱光吸收器件[67]

    Fig. 6.  (a) The scheme of broad-spectrum optical absorption; (b) the broad-spectrum photothermal-conversion device of gold nanostar@porous silicon composite structure[66]; (c) broad-spectrum optical absorption device with gold nanosphere/three-dimensional porous alumina composite structures[67].

    图 7  表面等离激元诱导的 (a) 光-热-力过程, (b) 光-热-电过程及(c) 光-热-光过程

    Fig. 7.  SPs induced (a) photon-thermal-mechanical process, (b) photon-thermal-electrical process and (c) photon-thermal-optical process.

    Baidu
  • [1]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403Google Scholar

    [2]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508Google Scholar

    [3]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629Google Scholar

    [4]

    Lal S, Link S, Halas N J 2007 Nat. Photon. 1 641Google Scholar

    [5]

    Tong L, Wei H, Zhang S, Xu H X 2014 Sensors 14 7959Google Scholar

    [6]

    Pan D, Wei H, Gao L, Xu H X 2016 Phys. Rev. Lett. 117 166803Google Scholar

    [7]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [8]

    High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, de Leon N P, Lukin M D, Park H 2015 Nature 522 192Google Scholar

    [9]

    Su D, Zhang X Y, Ma Y L, Shan F, Wu J Y, Fu X C, Zhang L J, Yuan K Q, Zhang T 2018 IEEE Photon. J. 10 1

    [10]

    Maier S A, Brongersma M L, Kik P G, Meltzer S, Requich A A G, Atwater H A 2001 Adv. Mater. 13 1501Google Scholar

    [11]

    Maier S A 2006 IEEE J. Sel. Top. Quant. 12 1214Google Scholar

    [12]

    Zhang T, Su D, Li R Z, Wang S J, Shan F, Xu J J, Zhang X Y 2016 J. Photon. Energy 6 042504Google Scholar

    [13]

    Govorov A O, Richardson H H 2007 Nano Today 2 30

    [14]

    Baffou G, Quidant R 2013 Laser Photon. Rev. 7 171Google Scholar

    [15]

    Boriskina S V, Cooper T A, Zeng L, Ni G, Tong J K, Tsurimaki Y, Huang Y, Meroueh L, Mahan G, Chen G 2017 Adv. Opt. Photon. 9 775Google Scholar

    [16]

    Hogan N J, Urban A S, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas N J 2014 Nano Lett. 14 4640Google Scholar

    [17]

    Roxworthy B J, Bhuiya A M, Vanka S P, Toussaint Jr K C 2014 Nat. Commun. 5 3173Google Scholar

    [18]

    Donner J S, Baffou G, McCloskey D, Quidant R 2011 ACS Nano 5 5457Google Scholar

    [19]

    Zoric I, Zach M, Kasemo B, Langhammer C 2011 ACS Nano 5 2535Google Scholar

    [20]

    Baffou G, Quidant R, Girard C 2009 Appl. Phys. Lett. 94 153109Google Scholar

    [21]

    Chen X, Chen Y, Yan M, Qiu M 2012 ACS Nano 6 2550Google Scholar

    [22]

    Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotech. 10 25Google Scholar

    [23]

    O’Brien K, Lanzillotti-Kimura N D, Rho J, Suchowski H, Yin X, Zhang X 2014 Nat. Commun. 5 4042Google Scholar

    [24]

    潘美妍, 李强, 仇旻 2016 物理 45 379Google Scholar

    Pan M Y, Li Q, Qiu M 2016 Physics 45 379Google Scholar

    [25]

    单杭永, 祖帅, 方哲宇 2017 激光与光电子学进展 54 030002

    Shan H Y, Zu S, Fang Z Y 2017 Laser & Optoelectronics Progress 54 030002

    [26]

    Bell A P, Fairfield J A, McCarthy E K, Mills S, Boland J J, Baffou G, McCloskey D 2015 ACS Nano 9 5551Google Scholar

    [27]

    Sanchot A, Baffou G, Marty R, Arbouet A, Quidant R, Girard C, Dujardin E 2012 ACS Nano 6 3434Google Scholar

    [28]

    Baffou G, Berto P, Bermúdez Ureña E, Quidant R, Monneret S, Polleux J, Rigneault H 2013 ACS Nano 7 6478Google Scholar

    [29]

    Liu H B, Ascencio J A, Perez-Alvarez M, Yacaman M J 2001 Surf. Sci. 491 88Google Scholar

    [30]

    Baffou G, Girard C, Quidant R 2010 Phys. Rev. Lett. 104 136805Google Scholar

    [31]

    Baffou G, Quidant R, García de Abajo F J 2010 ACS Nano 4 709Google Scholar

    [32]

    Li R Z, Hu A, Bridges D, Zhang T, Oake K D, Peng R, Tumuluri U, Wu Z, Feng Z 2015 Nanoscale 7 7368Google Scholar

    [33]

    Khosravi Khorashad L, Besteiro L V, Wang Z, Valentin J, Govorov A O 2016 J. Phys. Chem. C 120 13215Google Scholar

    [34]

    Liu Z, Li Q, Zhang W, Yang Y, Qiu M 2015 Plasmonics 10 911Google Scholar

    [35]

    Metwally K, Mensah S, Baffou G 2017 ACS Photon. 4 1544Google Scholar

    [36]

    Chen H, Shao L, Li Q, Wang J F 2013 Chem. Soc. Rev. 42 2679Google Scholar

    [37]

    Ma H, Tian P, Pello J, Bendix P M, Oddershede L B 2014 Nano Lett. 14 612Google Scholar

    [38]

    Boulais E, Lachaine R, Hatef A, Meunier M 2013 J. Photoch. Photobio. C: Photochem. Rev. 17 26Google Scholar

    [39]

    Peng P, Hu A, Gerlich A P, Zou G, Liu L, Zhou Y N 2015 ACS Appl. Mater. Inter. 7 12597Google Scholar

    [40]

    González-Rubio G, Guerrero-Martínez A, Liz-Marzán L M 2016 Accounts Chem. Res. 49 678Google Scholar

    [41]

    Catone D, Ciavardini A, Di Mario L, Paladini A, Toschi F, Cartoni A, Fratoddi I, Venditti I, Alabastri A, Proietti Zaccaria R, O’Keeffe P 2018 J. Phys. Chem. Lett. 9 5002Google Scholar

    [42]

    Schoenlein R W, Lin W Z, Fujimoto J G, Eesley G L 1987 Phys. Rev. Lett. 58 1680Google Scholar

    [43]

    Hu A, Rybachuk M, Lu Q B, Duley W W 2007 Appl. Phys. Lett. 91 131906Google Scholar

    [44]

    Xing S, Lin L, Zou G, Liu L, Peng P, Wu A, Duley W W, Zhou Y N 2017 Nanotechnology 28 405302Google Scholar

    [45]

    Li R Z, Peng R, Kihm K D, Bai S, Bridges D, Tumuluri U, Wu Z, Zhang T, Compagnini G, Feng Z, Hu A 2016 Energy Environ. Sci. 9 1458Google Scholar

    [46]

    Lim D K, Barhoumi A, Wylie R G, Reznor G, Langer R S, Kohane D S 2013 Nano Lett. 13 4075Google Scholar

    [47]

    Zolotavin P, Alabastri A, Nordlander P, Natelson D 2016 ACS Nano 10 6972Google Scholar

    [48]

    Herzog J B, Knight M W, Natelson D 2014 Nano Lett. 14 499Google Scholar

    [49]

    Meng L, Yu R, Qiu M, García de Abajo F J 2017 ACS Nano 11 7915Google Scholar

    [50]

    Garnett E C, Cai W, Cha J J, Mahmood F, Conno S T, Christoforo M G, Cui Y, McGehee1 M D, Brongersma M L 2012 Nat. Mater. 11 241Google Scholar

    [51]

    Hu A, Guo J Y, Alarifi H, Patane G, Zhou Y, Compagnini G, Xu C X 2010 Appl. Phys. Lett. 97 153117Google Scholar

    [52]

    Marzbanrad E, Hu A, Zhao B, Zhou Y 2013 J. Phys. Chem. C 117 16665Google Scholar

    [53]

    Yang C, Wong C P, Yuen M M F 2013 J. Mater. Chem. C 1 4052Google Scholar

    [54]

    Zhang X Y, Xu J J, Wu J Y, Shan F, Ma X D, Chen Y Z, Zhang T 2017 RSC Adv. 7 8Google Scholar

    [55]

    Yang H, Lu J, Ghosh P, Chen Z, Wang W, Ye H, Yu Q, Qiu M, Li Q 2018 Appl. Phys. Lett. 112 071108Google Scholar

    [56]

    Herrmann L O, Valev V K, Tserkezis C, Barnard J S, Kasera S, Scherman O A, Aizpurua J, Baumberg J J 2014 Nat. Commun. 5 4568Google Scholar

    [57]

    Li R Z, Hu A, Zhang T, Oakes K D 2014 ACS Appl. Mater. Inter. 6 21721Google Scholar

    [58]

    Fang L, Liu D, Wang Y, Li Y, Song L, Gong M, Li Y, Deng Z 2018 Nano Lett. 18 7014Google Scholar

    [59]

    González-Rubio G, Díaz-Núñez P, Rivera A, Prada A, Tardajos G, González-Izquierdo J, Bañares L, Llombart P, Macdowel L G, Palafox M A, Liz-Marzán L M, Peña-Rodríguez O, Guerrero-Martínez A 2017 Science 358 640Google Scholar

    [60]

    González-Rubio G, González-Izquierdo J, Bañares L, Tardajos G, Rivera A, Altantzis T, Bals S, Peña-Rodríguez O, Guerrero-Martínez A, Liz-Marzán L M 2015 Nano Lett. 15 8282Google Scholar

    [61]

    Eaton S M, Zhang H, Herman P R, Yoshino F, Shah L, Bovatsek J, Arai A Y 2005 Opt. Express 13 4708Google Scholar

    [62]

    Wang P 2018 Environ. Sci.: Nano 5 1078Google Scholar

    [63]

    Yang M Q, Gao M, Hong M, Ho G W 2018 Adv. Mater. 30 1802894Google Scholar

    [64]

    Gao M, Zhu L, Peh C K, Ho G W 2019 Energy Environ. Sci. 12 841Google Scholar

    [65]

    Zhang X Y, Shan F, Zhou H L, Su D, Xue X M, Wu J Y, Chen Y Z, Zhao N, Zhang T 2018 J. Mater. Chem. C 6 989Google Scholar

    [66]

    Gao M, Peh C K, Phan H T, Zhu L, Ho G W 2018 Adv. Energy Mater. 8 1800711Google Scholar

    [67]

    Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J 2016 Sci. Adv. 2 e1501227Google Scholar

    [68]

    Lin L, Peng X, Wang M, Scarabelli L, Mao Z, Liz-Marzán L M, Becker M F, Zheng Y 2016 ACS Nano 10 9659Google Scholar

    [69]

    Furube A, Hashimoto S 2017 NPG Asia Mater. 9 e454Google Scholar

    [70]

    Buscema M, Barkelid M, Zwiller V, van der Zant H S, Steele G A, Castellanos-Gomez A 2013 Nano Lett. 132 358

    [71]

    Echtermeyer T J, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2015 Nano Lett. 16 8

    [72]

    Zolotavin P, Evans C, Natelson D 2017 J. Phys. Chem. Lett. 8 1739Google Scholar

    [73]

    Heber A, Selmke M, Cichos F 2014 ACS Nano 8 1893Google Scholar

    [74]

    Chen X, Xia Q, Cao Y, Min Q, Zhang J, Chen Z, Chen H Y, Zhu J J 2017 Nat. Commun. 8 1498Google Scholar

    [75]

    Pellegrotti J V, Cortés E, Bordenave M D, Caldarola M, Kreuzer M P, Sanchez A D, Ojea I, Bragas A V, Stefani F D 2016 ACS Sensors 1 1351Google Scholar

    [76]

    Kamarudheen R, Castellanos G W, Kamp L P J, Clercx H J H, Baldi A 2018 ACS Nano 12 8447Google Scholar

    [77]

    Zhang X, Li X, Reish M E, Zhang D, Su N Q, Gutiérrez Y, Moreno F, Yang W, Everitt H O, Liu J 2018 Nano Lett. 18 1714Google Scholar

    [78]

    Zhou L, Swearer D F, Zhang C, Robatjazi H, Zhao H, Henderson L, Dong L, Christopher P, Carter E A, Nordlander P, Halas N J 2018 Science 362 69Google Scholar

    [79]

    Baffou G, Rigneault H, Marguet D, Jullien L 2014 Nat. Methods 11 899Google Scholar

    [80]

    Agrawal A, Singh A, Yazdi S, Singh A, Ong G K, Bustillo K, Johns R W, Ringe E, Milliron D J 2017 Nano Lett. 17 2611Google Scholar

    [81]

    Li X, Zhu J, Wei B 2016 Chem. Soc. Rev. 45 3145Google Scholar

    [82]

    Bernardi M, Mustafa J, Neaton J B, Louie S G 2015 Nat. Commun. 6 7044Google Scholar

    [83]

    Evans C I, Zolotavin P, Alabastri A, Yang J, Nordlanderet P, Natelson D 2017 Nano Lett. 17 5646Google Scholar

  • [1] 褚欣博, 金钻明, 吴旭, 李婧楠, 沈阳, 王若愚, 季秉煜, 李章顺, 彭滟. 铁磁异质结的远红外脉冲辐射及其光热调控研究.  , 2023, 72(15): 157801. doi: 10.7498/aps.72.20230543
    [2] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合.  , 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [3] 殷允桥, 吴宏伟. 基于人工表面等离激元结构的超表面磁镜.  , 2020, 69(23): 234101. doi: 10.7498/aps.69.20200514
    [4] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器.  , 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [5] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用.  , 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [6] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用.  , 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [7] 汪涵聪, 李志鹏. 表面增强光学力与光操纵研究进展.  , 2019, 68(14): 144101. doi: 10.7498/aps.68.20190606
    [8] 徐飞翔, 李晓光, 张振宇. 量子等离激元光子学在若干方向的最新进展.  , 2019, 68(14): 147103. doi: 10.7498/aps.68.20190331
    [9] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展.  , 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [10] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控.  , 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [11] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析.  , 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [12] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用.  , 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [13] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究.  , 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [14] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究.  , 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [15] 王栋, 许军, 陈溢杭. 介电常数近零模式与表面等离激元模式耦合实现宽带光吸收.  , 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [16] 陈聿, 刘垄, 黄忠, 屠林林, 詹鹏. 一维金属光栅嵌入磁性介质纳米结构下的横向磁光克尔效应的增强.  , 2016, 65(14): 147302. doi: 10.7498/aps.65.147302
    [17] 黄志芳, 倪亚贤, 孙华. 柱状磁光颗粒的局域表面等离激元共振及尺寸效应.  , 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [18] 朱华, 颜振东, 詹鹏, 王振林. 局域表面等离激元诱导的三次谐波增强效应.  , 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
    [19] 沈全洪, 徐端颐, 齐国生, 胡 恒, 刘 嵘. 孔径型超分辨近场结构光盘的掩膜热效应分析.  , 2005, 54(10): 4718-4722. doi: 10.7498/aps.54.4718
    [20] 易永祥, 汪国平, 龙拥兵, 单 红. 二维亚波长金属小孔阵列的透射光增强效应.  , 2003, 52(3): 604-608. doi: 10.7498/aps.52.604
计量
  • 文章访问数:  19885
  • PDF下载量:  939
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-01
  • 修回日期:  2019-05-05
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回
Baidu
map