-
金属纳米结构在光激发下产生的表面等离激元, 可导致亚波长光场局域、近场增强等效应, 在表面增强光谱、超灵敏传感、微流控芯片、光学力等方面有重要的应用. 对于光学力而言, 首先, 由于表面等离激元共振及其导致的电场增强对于入射波长、几何结构等具有较强的依赖性, 而光学力又与电场分布密切相关, 所以可利用光镊(会聚光束)来操纵或筛选金属纳米颗粒; 其次, 入射光激发金属纳米颗粒聚集体后, 在间隙形成的较大的近场增强和梯度, 也可看作一种“等离激元镊”, 用于操纵其他颗粒; 最后, 当入射光的偏振改变甚至为新型光束的情况下, 光学操纵将具有更高的自由度. 本文首先简要介绍了表面等离激元增强光学力的计算; 之后围绕光镊作用于等离激元金属纳米颗粒, 等离激元镊作用于其他颗粒, 与偏振、新型光场或手性结构相关的等离激元光学力这三个方面, 综述了近年来表面等离激元金属纳米颗粒光学力和光操纵的一些新进展; 最后提出了表面增强光学力与光操纵的若干研究趋势.The localized surface plasmons in metal nanostructures under optical excitation will lead to near-field localization and enhancement, which have shown important applications in surface enhancement spectroscopy, ultra-sensitive sensing, microfluidic chip, enhanced optical force, etc. The plasmon resonance and the resulting electric field enhancement strongly depend on wavelength and structure geometry. As a result, the optical force will be closely related to the field distribution, that is, the optical force can be used to manipulate and sort plasmonic metal structures. The large near-field enhancement and gradient of metal nanoparticle aggregates can also be used as a " plasmonic tweezer” to manipulate other particles. Furthermore, in the case of changing the incident polarization and even for a new type of structured laser beam, the optical manipulation has a higher degree of freedom. In this review, having briefly introduced the plasmon-enhanced optical force, we focus on the recent advances in the following three aspects: 1) the manipulation of plasmonic nanoparticles by optical tweezer, 2) the manipulation of other particles by plasmonic tweezer, and 3) dependence of plasmonic optical force on the polarization, optical angular momentum, structured light and the structured chirality. Comparing with other topics of plasmon- enhanced light-interactions, there is plenty of room for further developing the plasmon-enhanced optical force and optical manipulation. Several research trends can be foreseen. 1) More precise optical manipulating and sorting of nanoparticles (even sub-nanometer). For example, more sensitive special resonant modes (e.g. Fano resonance) of plasmonic nanostructure can be utilized. For some nanostructures with small feature sizes, especially when the gap size is close to 1 nm, the non-local effect has a certain effect on the plasmon resonance. Therefore, when calculating the optical force in this case, non-local effects and possibly other quantum effects should be considered. 2) Richer laser fields, that is, using various new structured fields and chiral structures provides a higher degree of freedom for the optical forces and optical manipulation. Also, the localized surface plasmons can be combined with propagating surface plasmons. 3) Wider applications of plasmonic optical forces, especially in combination with other effects and even interdiscipline, e.g. enhanced spectroscopy, enhanced single particle chemical reactions, nonlinear optical effects, and photothermal manipulations.
-
Keywords:
- surface plasmons /
- metal nanoparticles /
- optical force /
- optical manipulation
[1] Ashkin A 1970 Phys. Rev. Lett. 24 156
Google Scholar
[2] Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288
Google Scholar
[3] Dholakia K, Reece P, Gu M 2008 Chem. Soc. Rev. 37 42
Google Scholar
[4] Spesyvtseva S E S, Dholakia K 2016 ACS Photon. 3 719
Google Scholar
[5] Bendix P M, Jauffred L, Norregaard K, Oddershede L B 2014 IEEE J. Sel. Top. Quantum Electron. 20 15
[6] Daly M, Sergides M, Nic Chormaic S 2015 Laser Photon. Rev. 9 309
Google Scholar
[7] Bradac C 2018 Adv. Opt. Mater. 6 1800005
Google Scholar
[8] Svoboda K, Block S M 1994 Opt. Lett. 19 930
Google Scholar
[9] Halas N J, Lal S, Chang W S, Link S, Nordlander P 2011 Chem. Rev. 111 3913
Google Scholar
[10] Li Z, Xu H 2016 Adv. Phys. X 1 492
[11] Shegai T, Li Z, Dadosh T, Zhang Z, Xu H, Haran G 2008 Proc. Natl. Acad. Sci. USA 105 16448
Google Scholar
[12] Li Z, Shegai T, Haran G, Xu H 2009 ACS Nano 3 637
Google Scholar
[13] Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357
Google Scholar
[14] Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801
Google Scholar
[15] Lehmuskero A, Johansson P, Rubinsztein-Dunlop H, Tong L, Käll M 2015 ACS Nano 9 3453
Google Scholar
[16] Yang C, Wei S, Tong L 2014 Sci. Sin.: Phys. Mech. Astron. 44 1127
Google Scholar
[17] Juan M L, Righini M, Quidant R 2011 Nat. Photon. 5 349
Google Scholar
[18] Gao D, Ding W, Nieto-Vesperinas M, Ding X, Rahman M, Zhang T, Lim C, Qiu C W 2017 Light-Sci. Appl. 6 e17039
Google Scholar
[19] Raziman T V, Wolke R J, Martin O J F 2015 Faraday Discuss. 178 421
Google Scholar
[20] Polimeno P, Magazzù A, Iatì M A, Patti F, Saija R, Esposti Boschi C D, Donato M G, Gucciardi P G, Jones P H, Volpe G, Maragò O M 2018 J. Quant. Spectrosc. RA 218 131
Google Scholar
[21] Shoji T, Tsuboi Y 2014 J. Phys. Chem. Lett. 5 2957
Google Scholar
[22] Richards D, Zayats A, Nieto-Vesperinas M, Chaumet P C, Rahmani A 2004 Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 362 719
Google Scholar
[23] Urban A S, Carretero-Palacios S, Lutich A A, Lohmuller T, Feldmann J, Jackel F 2014 Nanoscale 6 4458
Google Scholar
[24] Yuan Y, Lin Y, Gu B, Panwar N, Tjin S C, Song J, Qu J, Yong K T 2017 Coordin. Chem. Rev. 339 138
Google Scholar
[25] Liu J, Li Z 2018 Micromachines 9 232
Google Scholar
[26] Gwo S, Chen H Y, Lin M H, Sun L, Li X 2016 Chem. Soc. Rev. 45 5672
Google Scholar
[27] Marago O M, Jones P H, Gucciardi P G, Volpe G, Ferrari A C 2013 Nat. Nanotechnol. 8 807
Google Scholar
[28] Arias-González J R, Nieto-Vesperinas M 2003 J. Opt. Soc. Am. A 20 1201
Google Scholar
[29] Phillips W D 1998 Rev. Mod. Phys. 70 721
Google Scholar
[30] Ashkin A 1992 Biophys. J. 61 569
Google Scholar
[31] Xu H, Käll M 2002 Phys. Rev. Lett. 89 246802
Google Scholar
[32] Hallock A J, Redmond P L, Brus L E 2005 Proc. Natl. Acad. Sci. USA 102 1280
Google Scholar
[33] Miljković V D, Pakizeh T, Sepulveda B, Johansson P, Käll M 2010 J. Phys. Chem. C 114 7472
Google Scholar
[34] Chu P, Mills D L 2007 Phys. Rev. Lett. 99 127401
Google Scholar
[35] Li Z, Käll M, Xu H 2008 Phys. Rev. B 77 085412
Google Scholar
[36] Zelenina A S, Quidant R, Nieto-Vesperinas M 2007 Opt. Lett. 32 1156
Google Scholar
[37] Kohoutek J, Dey D, Bonakdar A, Gelfand R, Sklar A, Memis O G, Mohseni H 2011 Nano Lett. 11 3378
Google Scholar
[38] Nome R A, Guffey M J, Scherer N F, Gray S K 2009 J. Phys. Chem. A 113 4408
Google Scholar
[39] Prikulis J, Svedberg F, Käll M, Enger J, Ramser K, Goksör M, Hanstorp D 2004 Nano Lett. 4 115
Google Scholar
[40] Svedberg F, Li Z, Xu H, Käll M 2006 Nano Lett. 6 2639
Google Scholar
[41] Fazio B, D’Andrea C, Foti A, Messina E, Irrera A, Donato M G, Villari V, Micali N, Maragò O M, Gucciardi P G 2016 Sci. Rep. 6 26952
Google Scholar
[42] Xu H, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318
Google Scholar
[43] Tong L, Miljkovic V D, Johansson P, Käll M 2011 Nano Lett. 11 4505
Google Scholar
[44] Herrmann L O, Valev V K, Tserkezis C, Barnard J S, Kasera S, Scherman O A, Aizpurua J, Baumberg J J 2014 Nat. Commun. 5 4568
Google Scholar
[45] Toussaint K C, Liu M, Pelton M, Pesic J, Guffey M J, Guyot-Sionnest P, Scherer N F 2007 Opt. Express 15 12017
Google Scholar
[46] Liu H, Ng J, Wang S B, Lin Z F, Hang Z H, Chan C T, Zhu S N 2011 Phys. Rev. Lett. 106 087401
Google Scholar
[47] Tumkur T U, Yang X, Cerjan B, Halas N J, Nordlander P, Thomann I 2016 Nano Lett. 16 7942
Google Scholar
[48] Tumkur T, Yang X, Zhang C, Yang J, Zhang Y, Naik G V, Nordlander P, Halas N J 2018 Nano Lett. 18 2040
Google Scholar
[49] Zhang C, Tumkur T, Yang J, Lou M, Dong L, Zhou L, Nordlander P, Halas N J 2018 Nano Lett. 18 6509
Google Scholar
[50] Merlein J, Kahl M, Zuschlag A, Sell A, Halm A, Boneberg J, Leiderer P, Leitenstorfer A, Bratschitsch R 2008 Nat. Photon. 2 230
Google Scholar
[51] Hansen P M, Bhatia V K, Harrit N, Oddershede L 2005 Nano Lett. 5 1937
Google Scholar
[52] Zelenina A S, Quidant R, Badenes G, Nieto-Vesperinas M 2006 Opt. Lett. 31 2054
Google Scholar
[53] Gargiulo J, Violi I L, Cerrota S, Chvátal L, Cortés E, Perassi E M, Diaz F, Zemánek P, Stefani F D 2017 ACS Nano 11 9678
Google Scholar
[54] Huergo M A, Maier C M, Castez M F, Vericat C, Nedev S, Salvarezza R C, Urban A S, Feldmann J 2016 ACS Nano 10 3614
Google Scholar
[55] Li Z, Zhang S, Tong L, Wang P, Dong B, Xu H 2013 ACS Nano 8 701
[56] Chen H, Liu S, Zi J, Lin Z 2015 ACS Nano 9 1926
Google Scholar
[57] Chen H, Ye Q, Zhang Y, Shi L, Liu S, Jian Z, Lin Z 2017 Phys. Rev. A 96 023809
Google Scholar
[58] Cao T, Mao L, Gao D, Ding W, Qiu C W 2016 Nanoscale 8 5657
Google Scholar
[59] Gao D, Shi R, Huang Y, Gao L 2017 Phys. Rev. A 96 043826
Google Scholar
[60] Bian X, Gao D L, Gao L 2017 Opt. Express 25 24566
Google Scholar
[61] Yang Y, Shi Z, Li J, Li Z Y 2016 Photon. Res. 4 65
Google Scholar
[62] Yang Y, Jiang X, Ruan B, Dai X, Xiang Y 2018 Opt. Mater. Express 8 211
[63] Wenjie Y, Longkun Y, Jianing C, Yaqi W, Peijie W, Zhipeng L 2017 Adv. Mater. 29 1702893
Google Scholar
[64] Nan F, Yan Z 2018 Nano Lett. 18 4500
Google Scholar
[65] Wu W, Zhu X, Zuo Y, Liang L, Zhang S, Zhang X, Yang Y 2016 ACS Photon. 3 2497
Google Scholar
[66] Volpe G, Quidant R, Badenes G, Petrov D 2006 Phys. Rev. Lett. 96 238101
Google Scholar
[67] Ivinskaya A, Petrov M I, Bogdanov A A, Shishkin I, Ginzburg P, Shalin A S 2017 Light-Sci. Appl. 6 e16258
Google Scholar
[68] Righini M, Zelenina A S, Girard C, Quidant R 2007 Nat. Phys. 3 477
Google Scholar
[69] Righini M, Volpe G, Girard C, Petrov D, Quidant R 2008 Phys. Rev. Lett. 100 186804
Google Scholar
[70] Guo G, Feng T, Xu Y 2018 Opt. Lett. 43 4961
Google Scholar
[71] Chen J, Ng J, Lin Z, Chan C T 2011 Nat. Photon. 5 531
Google Scholar
[72] Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W, Xu H 2018 Chem. Rev. 118 2882
Google Scholar
[73] Yang L, Li P L, Wang H, Li Z 2018 Chin. Phys. B 27 94216
Google Scholar
[74] Li P, Pan D, Yang L, Wei H, He S, Xu H, Li Z 2019 Nanoscale 11 2153
Google Scholar
[75] Yang C, Pan D, Tong L, Xu H 2016 Nanoscale 8 19195
Google Scholar
[76] Lu J, Yang H, Zhou L, Yang Y, Luo S, Li Q, Qiu M 2017 Phys. Rev. Lett. 118 043601
Google Scholar
[77] Huang Q, Lee J, Arce F T, Yoon I, Angsantikul P, Liu J, Shi Y, Villanueva J, Thamphiwatana S, Ma X, Zhang L, Chen S, Lal R, Sirbuly D J 2017 Nat. Photon. 11 352
Google Scholar
[78] Righini M, Ghenuche P, Cherukulappurath S, Myroshnychenko V, García de Abajo F J, Quidant R 2009 Nano Lett. 9 3387
Google Scholar
[79] Grigorenko A N, Roberts N W, Dickinson M R, Zhang Y 2008 Nat. Photon. 2 365
Google Scholar
[80] Zhang W, Huang L, Santschi C, Martin O J 2010 Nano Lett. 10 1006
Google Scholar
[81] Tsuboi Y, Shoji T, Kitamura N, Takase M, Murakoshi K, Mizumoto Y, Ishihara H 2010 J. Phys. Chem. Lett. 1 2327
Google Scholar
[82] Roxworthy B J, Ko K D, Kumar A, Fung K H, Chow E K, Liu G L, Fang N X, Toussaint Jr K C 2012 Nano Lett. 12 796
Google Scholar
[83] Tanaka Y, Kaneda S, Sasaki K 2013 Nano Lett. 13 2146
Google Scholar
[84] Berthelot J, Acimovic S S, Juan M L, Kreuzer M P, Renger J, Quidant R 2014 Nat. Nanotechnol. 9 295
Google Scholar
[85] Yoo D, Gurunatha K L, Choi H K, Mohr D A, Ertsgaard C T, Gordon R, Oh S H 2018 Nano Lett. 18 3637
Google Scholar
[86] Juan M L, Gordon R, Pang Y, Eftekhari F, Quidant R 2009 Nat. Phys. 5 915
Google Scholar
[87] Chen C, Juan M L, Li Y, Maes G, Borghs G, van Dorpe P, Quidant R 2012 Nano Lett. 12 125
Google Scholar
[88] Mestres P, Berthelot J, Aćimović S S, Quidant R 2016 Light-Sci. Appl. 5 e16092
Google Scholar
[89] Jensen R A, Huang I C, Chen O, Choy J T, Bischof T S, Lončar M, Bawendi M G 2016 ACS Photon. 3 423
Google Scholar
[90] Yoon S J, Lee J, Han S, Kim C K, Ahn C W, Kim M K, Lee Y H 2018 Nat. Commun. 9 2218
Google Scholar
[91] Sainidou R, Garcia de Abajo F J 2008 Phys. Rev. Lett. 101 136802
Google Scholar
[92] Huang W H, Li S F, Xu H T, Xiang Z X, Long Y B, Deng H D 2018 Opt. Express 26 6202
Google Scholar
[93] Shao L, Käll M 2018 Adv. Funct. Mater. 28 1706272
Google Scholar
[94] Tong L, Miljkovic V D, Käll M 2010 Nano Lett. 10 268
Google Scholar
[95] Lehmuskero A, Ogier R, Gschneidtner T, Johansson P, Käll M 2013 Nano Lett. 13 3129
Google Scholar
[96] Shao L, Yang Z J, Andrén D, Johansson P, Käll M 2015 ACS Nano 9 12542
Google Scholar
[97] Andrén D, Shao L, Odebo Länk N, Aćimović S S, Johansson P, Käll M 2017 ACS Nano 11 10053
Google Scholar
[98] Pelton M, Liu M, Kim H Y, Smith G, Guyot-Sionnest P, Scherer N F 2006 Opt. Lett. 31 2075
Google Scholar
[99] Wang K, Schonbrun E, Steinvurzel P, Crozier K B 2011 Nat. Commun. 2 469
Google Scholar
[100] Kermani H, Rohrbach A 2018 ACS Photon. 5 4660
Google Scholar
[101] Zheng Y, Ryan J, Hansen P, Cheng Y T, Lu T J, Hesselink L 2014 Nano Lett. 14 2971
Google Scholar
[102] Pan D, Wei H, Gao L, Xu H 2016 Phys. Rev. Lett. 117 166803
Google Scholar
[103] Rodríguez-Fortuño F J, Engheta N, Martínez A, Zayats A V 2015 Nat. Commun. 6 8799
Google Scholar
[104] Petrov M I, Sukhov S V, Bogdanov A A, Shalin A S, Dogariu A 2016 Laser Photon. Rev. 10 116
Google Scholar
[105] Wang K, Schonbrun E, Crozier K B 2009 Nano Lett. 9 2623
Google Scholar
[106] Dholakia K, Čižmár T 2011 Nat. Photon. 5 335
Google Scholar
[107] Padgett M, Bowman R 2011 Nat. Photon. 5 343
Google Scholar
[108] Friese M E J, Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H 1998 Nature 394 348
Google Scholar
[109] Albaladejo S, Marqués M I, Laroche M, Sáenz J J 2009 Phys. Rev. Lett. 102 113602
Google Scholar
[110] Dienerowitz M, Mazilu M, Reece P J, Krauss T F, Dholakia K 2008 Opt. Express 16 4991
Google Scholar
[111] Yan Z, Scherer N F 2013 J. Phys. Chem. Lett. 4 2937
Google Scholar
[112] Tsai W Y, Huang J S, Huang C B 2014 Nano Lett. 14 547
Google Scholar
[113] Zhan Q 2004 Opt. Express 12 3377
Google Scholar
[114] Min C, Shen Z, Shen J, Zhang Y, Fang H, Yuan G, Du L, Zhu S, Lei T, Yuan X 2013 Nat. Commun. 4 2891
Google Scholar
[115] Zhang Y, Shen J, Xie Z, Dou X, Min C, Lei T, Liu J, Zhu S, Yuan X 2017 Nanoscale 9 10694
Google Scholar
[116] Taylor M A, Waleed M, Stilgoe A B, Rubinsztein-Dunlop H, Bowen W P 2015 Nat. Photon. 9 669
Google Scholar
[117] Huft P R, Kolbow J D, Thweatt J T, Lindquist N C 2017 Nano Lett. 17 7920
Google Scholar
[118] Liu M, Zentgraf T, Liu Y, Bartal G, Zhang X 2010 Nat. Nanotechnol. 5 570
Google Scholar
[119] Wang S B, Chan C T 2014 Nat. Commun. 5 3307
Google Scholar
[120] Zhao Y, Saleh A A E, van de Haar M A, Baum B, Briggs J A, Lay A, Reyes-Becerra O A, Dionne J A 2017 Nat. Nanotechnol. 12 1055
Google Scholar
[121] Chen H, Jiang Y, Wang N, Lu W, Liu S, Lin Z 2015 Opt. Lett. 40 5530
Google Scholar
[122] Kamandi M, Albooyeh M, Veysi M, Rajaei M, Zeng J, Wickramasinghe H K, Capolino F 2018 ACS Photon. 5 4360
Google Scholar
[123] Phillips D B, Padgett M J, Hanna S, Ho Y L D, Carberry D M, Miles M J, Simpson S H 2014 Nat. Photon. 8 400
Google Scholar
[124] Toscano G, Straubel J, Kwiatkowski A, Rockstuhl C, Evers F, Xu H, Mortensen N A, Wubs M 2015 Nat. Commun. 6 7132
Google Scholar
[125] Yang L, Wang H, Fang Y, Li Z 2016 ACS Nano 10 1580
Google Scholar
[126] Wang H 2018 Sci. Rep. 8 9589
Google Scholar
[127] Wang H, Huang S, Xie W, Lin J, Yang L, Li Z 2018 Proc. SPIE 10824, Plasmonics III 10824 1082404
[128] Ni W, Ba H, Lutich A A, Jäckel F, Feldmann J 2012 Nano Lett. 12 4647
Google Scholar
[129] Jiang Y, Narushima T, Okamoto H 2010 Nat. Phys. 6 1005
Google Scholar
[130] Hoshina M, Yokoshi N, Okamoto H, Ishihara H 2018 ACS Photon. 5 318
Google Scholar
[131] Zhang Y, Shen J, Min C, Jin Y, Jiang Y, Liu J, Zhu S, Sheng Y, Zayats A V, Yuan X 2018 Nano Lett. 18 5538
Google Scholar
[132] Ren Y X, Kelly T S, Zhang C, Xu H, Chen Z 2017 Opt. Lett. 42 627
Google Scholar
[133] Lin L, Wang M, Peng X, Lissek E N, Mao Z, Scarabelli L, Adkins E, Coskun S, Unalan H E, Korgel B A, Liz-Marzán L M, Florin E L, Zheng Y 2018 Nat. Photon. 12 195
Google Scholar
-
图 1 (a)银纳米颗粒二聚体和三聚体间隙中心点的光学势[31]; (b)纳米间隙附近光学势的空间分布[31]; (c)光学力与电场增强的比较[32]; (d)偏振平行或垂直于大小不对称二聚体轴时的光学力[33]; (e)光学力与范德瓦耳斯力的比较[34]; (f)领结型二聚体的光学力分布[37]
Fig. 1. (a) Simulated optical potential U(λ) at the gap between Ag nanoparticles (d = 1 nm) in a trimer and a dimer system in water with a plane wave polarized parallel to the symmetry axis[31]; (b) spatial variation of optical potential U around a trimer (R = 25 nm, d = 1 nm) gap excited at a surface plasmon resonance (λ = 760 nm)[31]; (c) a comparison of the field enhancement to the optical force at the surface of one nanoparticle in the gap[32]; (d) calculated optical force for Ag and Au nanoparticle heterodimers (R1 = 10 nm, R2 = 10−40 nm, d = 2 nm) in the parallel and perpendicular polarization with different energies[33]; (e) the resonant optical force for Ag dimer (R = 30 nm), compared to the van der Waals attraction (black) with the energy of 3 eV (blue) and 3.3 eV (red)[34]; (f) optical force map of a bowtie antenna shows hot spots near the gap and two sides[37].
图 2 (a)光学捕获形成颗粒二聚体后的SERS的增强[40]; (b)激光辐射金纳米颗粒成链及其共振峰的变化[44]; (c)二聚体的光学力成像[47]; (d)AFM辅助的Al-Au纳米盘二聚体形变[49]; (e) AFM和暗场散射光谱仪结合实现纳米光学力控制[50]
Fig. 2. (a) Dark-field images of an Ag nano particle and its dimer. The immobilized particle (I) and trapped particle (T) shows no SERS signal. When T being near-field contact with I, the dimer (P) shows an enhanced SERS signal[40]. (b) The threads develop after adding CB molecules and incident fs laser. A dip at the laser wavelength and a peak at the TCPs emerge[44]. (c) Photo-induced force image of an e-beam fabricated gold dimers. The incident polarization is parallel to the dimer axis[47]. (d) Schematic and SEM images of reshaping of Al-Au nanodisk heterodimers before (left) and after (right) illumination[49]. (e) Schematic of the optical manipulation set-up consisting of an AFM and a dark-field scattering spectroscopy system[50].
图 3 (a)硅核-金壳纳米颗粒能流在高斯激发下的能流[55]; (b)光学势与颗粒半径的关系[55]; (c)金核-银壳纳米颗粒示意图[56]; (d)光学力与波长、核半径的关系[56]
Fig. 3. (a) Energy flow of a Si-Au core-shell sphere under Gaussian beam excitation. The particle is positioned at x = w0/2. The beam waist w0 = 0.5 μm. The white curve and color scale are the direction and logarithmic modulus of the energy flow, respectively[55]. (b) Potential well as a function of the radius under the excitation of λ = 410 nm (black) and 830 nm (red)[55]. (c) Schematic of an Au-Ag core-shell sphere[56]. (d) Phase diagrams of longitudinal optical force Fz acting on the sphere[56].
图 4 金属纳米颗粒形成的等离激元镊 (a)单颗粒阵列[68]; (b)纳米颗粒二聚体阵列[79]; (c)纳米棒二聚体[80]; (d)领结型二聚体[82]; (e)领结型纳米孔[84]; (f)同轴纳米孔[85]
Fig. 4. Plasmonic tweezer: (a) Schematic of the gold particle pattern[68]; (b) schematics of a nanodots substrate[79]; (c) schematic of the individual dimer with a 10 nm gap[80]; (d) Au bowtie nano antenna arrays for highly efficient manipulation[82]; (e) SIBA trapping of a holey fiber, the incident polarization is parallel along the gap axis to excite its transverse mode[84]; (f) optical trapping with a gold coaxial nano-aperture (10 nm gap)[85].
图 5 入射偏振变化引起的金属纳米颗粒转动和纳米马达 (a)银纳米线自转[94]; (b)金纳米颗粒自转[95]; (c)金纳米棒自转[96]; (d)纳米颗粒绕金纳米柱公转[99]; (e)二聚体转向[100]
Fig. 5. Rotation and plasmonic nanomotor. (a) The dark-field images show a silver nanowire is rotated by turning the incident polarization (red arrows)[94]. (b) Schematic of the gold nanoparticle trapped between two glass planes rotates by absorbing spin angular momentum from the circularly polarized beam[95]. (c) Schematic of the gold nanorod rotates in solutions through plasmonic torques of circularly polarized beam[96]. (d) Schematic of trapping and rotation of a nanosphere by the gold nanopillar with linearly polarized light[99]. (e) Schematic of the silver nanoparticle dimer orient along the incident polarization. Two orthogonal polarizations can determine the dimer angle by the difference in the spectral intensity peak[100].
图 6 (a)方解石晶体自转[108]; (b)拉盖尔-高斯光入射下的单个金纳米颗粒运动情况的空间分布[110]; (c)光涡旋引起银纳米线自转[111]; (d) PSPs捕获金颗粒[114]; (e)万字形金纳米马达[118]
Fig. 6. (a) A calcite crystal is parallel with the polarization of the laser beam[108]; (b) spatial points of the movement of a gold nanoparticle with Laguerre-Gaussian beam of L = 2 at λ = 488 nm with 120 mW laser power[110]; (c) schematic of the rotation of a Ag nanowire on a glass substrate induced by an optical vortex[111]; (d) schematic of the metal particles trapped by a PSPs virtual probe[114]; (e) schematic of the gold nano-motor, sandwiched between two silica disks (300 nm thick, 2.2 mm × 2.2 mm). The large silica disk reduces the Brownian motion of the nanoparticles[118].
-
[1] Ashkin A 1970 Phys. Rev. Lett. 24 156
Google Scholar
[2] Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288
Google Scholar
[3] Dholakia K, Reece P, Gu M 2008 Chem. Soc. Rev. 37 42
Google Scholar
[4] Spesyvtseva S E S, Dholakia K 2016 ACS Photon. 3 719
Google Scholar
[5] Bendix P M, Jauffred L, Norregaard K, Oddershede L B 2014 IEEE J. Sel. Top. Quantum Electron. 20 15
[6] Daly M, Sergides M, Nic Chormaic S 2015 Laser Photon. Rev. 9 309
Google Scholar
[7] Bradac C 2018 Adv. Opt. Mater. 6 1800005
Google Scholar
[8] Svoboda K, Block S M 1994 Opt. Lett. 19 930
Google Scholar
[9] Halas N J, Lal S, Chang W S, Link S, Nordlander P 2011 Chem. Rev. 111 3913
Google Scholar
[10] Li Z, Xu H 2016 Adv. Phys. X 1 492
[11] Shegai T, Li Z, Dadosh T, Zhang Z, Xu H, Haran G 2008 Proc. Natl. Acad. Sci. USA 105 16448
Google Scholar
[12] Li Z, Shegai T, Haran G, Xu H 2009 ACS Nano 3 637
Google Scholar
[13] Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357
Google Scholar
[14] Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801
Google Scholar
[15] Lehmuskero A, Johansson P, Rubinsztein-Dunlop H, Tong L, Käll M 2015 ACS Nano 9 3453
Google Scholar
[16] Yang C, Wei S, Tong L 2014 Sci. Sin.: Phys. Mech. Astron. 44 1127
Google Scholar
[17] Juan M L, Righini M, Quidant R 2011 Nat. Photon. 5 349
Google Scholar
[18] Gao D, Ding W, Nieto-Vesperinas M, Ding X, Rahman M, Zhang T, Lim C, Qiu C W 2017 Light-Sci. Appl. 6 e17039
Google Scholar
[19] Raziman T V, Wolke R J, Martin O J F 2015 Faraday Discuss. 178 421
Google Scholar
[20] Polimeno P, Magazzù A, Iatì M A, Patti F, Saija R, Esposti Boschi C D, Donato M G, Gucciardi P G, Jones P H, Volpe G, Maragò O M 2018 J. Quant. Spectrosc. RA 218 131
Google Scholar
[21] Shoji T, Tsuboi Y 2014 J. Phys. Chem. Lett. 5 2957
Google Scholar
[22] Richards D, Zayats A, Nieto-Vesperinas M, Chaumet P C, Rahmani A 2004 Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 362 719
Google Scholar
[23] Urban A S, Carretero-Palacios S, Lutich A A, Lohmuller T, Feldmann J, Jackel F 2014 Nanoscale 6 4458
Google Scholar
[24] Yuan Y, Lin Y, Gu B, Panwar N, Tjin S C, Song J, Qu J, Yong K T 2017 Coordin. Chem. Rev. 339 138
Google Scholar
[25] Liu J, Li Z 2018 Micromachines 9 232
Google Scholar
[26] Gwo S, Chen H Y, Lin M H, Sun L, Li X 2016 Chem. Soc. Rev. 45 5672
Google Scholar
[27] Marago O M, Jones P H, Gucciardi P G, Volpe G, Ferrari A C 2013 Nat. Nanotechnol. 8 807
Google Scholar
[28] Arias-González J R, Nieto-Vesperinas M 2003 J. Opt. Soc. Am. A 20 1201
Google Scholar
[29] Phillips W D 1998 Rev. Mod. Phys. 70 721
Google Scholar
[30] Ashkin A 1992 Biophys. J. 61 569
Google Scholar
[31] Xu H, Käll M 2002 Phys. Rev. Lett. 89 246802
Google Scholar
[32] Hallock A J, Redmond P L, Brus L E 2005 Proc. Natl. Acad. Sci. USA 102 1280
Google Scholar
[33] Miljković V D, Pakizeh T, Sepulveda B, Johansson P, Käll M 2010 J. Phys. Chem. C 114 7472
Google Scholar
[34] Chu P, Mills D L 2007 Phys. Rev. Lett. 99 127401
Google Scholar
[35] Li Z, Käll M, Xu H 2008 Phys. Rev. B 77 085412
Google Scholar
[36] Zelenina A S, Quidant R, Nieto-Vesperinas M 2007 Opt. Lett. 32 1156
Google Scholar
[37] Kohoutek J, Dey D, Bonakdar A, Gelfand R, Sklar A, Memis O G, Mohseni H 2011 Nano Lett. 11 3378
Google Scholar
[38] Nome R A, Guffey M J, Scherer N F, Gray S K 2009 J. Phys. Chem. A 113 4408
Google Scholar
[39] Prikulis J, Svedberg F, Käll M, Enger J, Ramser K, Goksör M, Hanstorp D 2004 Nano Lett. 4 115
Google Scholar
[40] Svedberg F, Li Z, Xu H, Käll M 2006 Nano Lett. 6 2639
Google Scholar
[41] Fazio B, D’Andrea C, Foti A, Messina E, Irrera A, Donato M G, Villari V, Micali N, Maragò O M, Gucciardi P G 2016 Sci. Rep. 6 26952
Google Scholar
[42] Xu H, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318
Google Scholar
[43] Tong L, Miljkovic V D, Johansson P, Käll M 2011 Nano Lett. 11 4505
Google Scholar
[44] Herrmann L O, Valev V K, Tserkezis C, Barnard J S, Kasera S, Scherman O A, Aizpurua J, Baumberg J J 2014 Nat. Commun. 5 4568
Google Scholar
[45] Toussaint K C, Liu M, Pelton M, Pesic J, Guffey M J, Guyot-Sionnest P, Scherer N F 2007 Opt. Express 15 12017
Google Scholar
[46] Liu H, Ng J, Wang S B, Lin Z F, Hang Z H, Chan C T, Zhu S N 2011 Phys. Rev. Lett. 106 087401
Google Scholar
[47] Tumkur T U, Yang X, Cerjan B, Halas N J, Nordlander P, Thomann I 2016 Nano Lett. 16 7942
Google Scholar
[48] Tumkur T, Yang X, Zhang C, Yang J, Zhang Y, Naik G V, Nordlander P, Halas N J 2018 Nano Lett. 18 2040
Google Scholar
[49] Zhang C, Tumkur T, Yang J, Lou M, Dong L, Zhou L, Nordlander P, Halas N J 2018 Nano Lett. 18 6509
Google Scholar
[50] Merlein J, Kahl M, Zuschlag A, Sell A, Halm A, Boneberg J, Leiderer P, Leitenstorfer A, Bratschitsch R 2008 Nat. Photon. 2 230
Google Scholar
[51] Hansen P M, Bhatia V K, Harrit N, Oddershede L 2005 Nano Lett. 5 1937
Google Scholar
[52] Zelenina A S, Quidant R, Badenes G, Nieto-Vesperinas M 2006 Opt. Lett. 31 2054
Google Scholar
[53] Gargiulo J, Violi I L, Cerrota S, Chvátal L, Cortés E, Perassi E M, Diaz F, Zemánek P, Stefani F D 2017 ACS Nano 11 9678
Google Scholar
[54] Huergo M A, Maier C M, Castez M F, Vericat C, Nedev S, Salvarezza R C, Urban A S, Feldmann J 2016 ACS Nano 10 3614
Google Scholar
[55] Li Z, Zhang S, Tong L, Wang P, Dong B, Xu H 2013 ACS Nano 8 701
[56] Chen H, Liu S, Zi J, Lin Z 2015 ACS Nano 9 1926
Google Scholar
[57] Chen H, Ye Q, Zhang Y, Shi L, Liu S, Jian Z, Lin Z 2017 Phys. Rev. A 96 023809
Google Scholar
[58] Cao T, Mao L, Gao D, Ding W, Qiu C W 2016 Nanoscale 8 5657
Google Scholar
[59] Gao D, Shi R, Huang Y, Gao L 2017 Phys. Rev. A 96 043826
Google Scholar
[60] Bian X, Gao D L, Gao L 2017 Opt. Express 25 24566
Google Scholar
[61] Yang Y, Shi Z, Li J, Li Z Y 2016 Photon. Res. 4 65
Google Scholar
[62] Yang Y, Jiang X, Ruan B, Dai X, Xiang Y 2018 Opt. Mater. Express 8 211
[63] Wenjie Y, Longkun Y, Jianing C, Yaqi W, Peijie W, Zhipeng L 2017 Adv. Mater. 29 1702893
Google Scholar
[64] Nan F, Yan Z 2018 Nano Lett. 18 4500
Google Scholar
[65] Wu W, Zhu X, Zuo Y, Liang L, Zhang S, Zhang X, Yang Y 2016 ACS Photon. 3 2497
Google Scholar
[66] Volpe G, Quidant R, Badenes G, Petrov D 2006 Phys. Rev. Lett. 96 238101
Google Scholar
[67] Ivinskaya A, Petrov M I, Bogdanov A A, Shishkin I, Ginzburg P, Shalin A S 2017 Light-Sci. Appl. 6 e16258
Google Scholar
[68] Righini M, Zelenina A S, Girard C, Quidant R 2007 Nat. Phys. 3 477
Google Scholar
[69] Righini M, Volpe G, Girard C, Petrov D, Quidant R 2008 Phys. Rev. Lett. 100 186804
Google Scholar
[70] Guo G, Feng T, Xu Y 2018 Opt. Lett. 43 4961
Google Scholar
[71] Chen J, Ng J, Lin Z, Chan C T 2011 Nat. Photon. 5 531
Google Scholar
[72] Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W, Xu H 2018 Chem. Rev. 118 2882
Google Scholar
[73] Yang L, Li P L, Wang H, Li Z 2018 Chin. Phys. B 27 94216
Google Scholar
[74] Li P, Pan D, Yang L, Wei H, He S, Xu H, Li Z 2019 Nanoscale 11 2153
Google Scholar
[75] Yang C, Pan D, Tong L, Xu H 2016 Nanoscale 8 19195
Google Scholar
[76] Lu J, Yang H, Zhou L, Yang Y, Luo S, Li Q, Qiu M 2017 Phys. Rev. Lett. 118 043601
Google Scholar
[77] Huang Q, Lee J, Arce F T, Yoon I, Angsantikul P, Liu J, Shi Y, Villanueva J, Thamphiwatana S, Ma X, Zhang L, Chen S, Lal R, Sirbuly D J 2017 Nat. Photon. 11 352
Google Scholar
[78] Righini M, Ghenuche P, Cherukulappurath S, Myroshnychenko V, García de Abajo F J, Quidant R 2009 Nano Lett. 9 3387
Google Scholar
[79] Grigorenko A N, Roberts N W, Dickinson M R, Zhang Y 2008 Nat. Photon. 2 365
Google Scholar
[80] Zhang W, Huang L, Santschi C, Martin O J 2010 Nano Lett. 10 1006
Google Scholar
[81] Tsuboi Y, Shoji T, Kitamura N, Takase M, Murakoshi K, Mizumoto Y, Ishihara H 2010 J. Phys. Chem. Lett. 1 2327
Google Scholar
[82] Roxworthy B J, Ko K D, Kumar A, Fung K H, Chow E K, Liu G L, Fang N X, Toussaint Jr K C 2012 Nano Lett. 12 796
Google Scholar
[83] Tanaka Y, Kaneda S, Sasaki K 2013 Nano Lett. 13 2146
Google Scholar
[84] Berthelot J, Acimovic S S, Juan M L, Kreuzer M P, Renger J, Quidant R 2014 Nat. Nanotechnol. 9 295
Google Scholar
[85] Yoo D, Gurunatha K L, Choi H K, Mohr D A, Ertsgaard C T, Gordon R, Oh S H 2018 Nano Lett. 18 3637
Google Scholar
[86] Juan M L, Gordon R, Pang Y, Eftekhari F, Quidant R 2009 Nat. Phys. 5 915
Google Scholar
[87] Chen C, Juan M L, Li Y, Maes G, Borghs G, van Dorpe P, Quidant R 2012 Nano Lett. 12 125
Google Scholar
[88] Mestres P, Berthelot J, Aćimović S S, Quidant R 2016 Light-Sci. Appl. 5 e16092
Google Scholar
[89] Jensen R A, Huang I C, Chen O, Choy J T, Bischof T S, Lončar M, Bawendi M G 2016 ACS Photon. 3 423
Google Scholar
[90] Yoon S J, Lee J, Han S, Kim C K, Ahn C W, Kim M K, Lee Y H 2018 Nat. Commun. 9 2218
Google Scholar
[91] Sainidou R, Garcia de Abajo F J 2008 Phys. Rev. Lett. 101 136802
Google Scholar
[92] Huang W H, Li S F, Xu H T, Xiang Z X, Long Y B, Deng H D 2018 Opt. Express 26 6202
Google Scholar
[93] Shao L, Käll M 2018 Adv. Funct. Mater. 28 1706272
Google Scholar
[94] Tong L, Miljkovic V D, Käll M 2010 Nano Lett. 10 268
Google Scholar
[95] Lehmuskero A, Ogier R, Gschneidtner T, Johansson P, Käll M 2013 Nano Lett. 13 3129
Google Scholar
[96] Shao L, Yang Z J, Andrén D, Johansson P, Käll M 2015 ACS Nano 9 12542
Google Scholar
[97] Andrén D, Shao L, Odebo Länk N, Aćimović S S, Johansson P, Käll M 2017 ACS Nano 11 10053
Google Scholar
[98] Pelton M, Liu M, Kim H Y, Smith G, Guyot-Sionnest P, Scherer N F 2006 Opt. Lett. 31 2075
Google Scholar
[99] Wang K, Schonbrun E, Steinvurzel P, Crozier K B 2011 Nat. Commun. 2 469
Google Scholar
[100] Kermani H, Rohrbach A 2018 ACS Photon. 5 4660
Google Scholar
[101] Zheng Y, Ryan J, Hansen P, Cheng Y T, Lu T J, Hesselink L 2014 Nano Lett. 14 2971
Google Scholar
[102] Pan D, Wei H, Gao L, Xu H 2016 Phys. Rev. Lett. 117 166803
Google Scholar
[103] Rodríguez-Fortuño F J, Engheta N, Martínez A, Zayats A V 2015 Nat. Commun. 6 8799
Google Scholar
[104] Petrov M I, Sukhov S V, Bogdanov A A, Shalin A S, Dogariu A 2016 Laser Photon. Rev. 10 116
Google Scholar
[105] Wang K, Schonbrun E, Crozier K B 2009 Nano Lett. 9 2623
Google Scholar
[106] Dholakia K, Čižmár T 2011 Nat. Photon. 5 335
Google Scholar
[107] Padgett M, Bowman R 2011 Nat. Photon. 5 343
Google Scholar
[108] Friese M E J, Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H 1998 Nature 394 348
Google Scholar
[109] Albaladejo S, Marqués M I, Laroche M, Sáenz J J 2009 Phys. Rev. Lett. 102 113602
Google Scholar
[110] Dienerowitz M, Mazilu M, Reece P J, Krauss T F, Dholakia K 2008 Opt. Express 16 4991
Google Scholar
[111] Yan Z, Scherer N F 2013 J. Phys. Chem. Lett. 4 2937
Google Scholar
[112] Tsai W Y, Huang J S, Huang C B 2014 Nano Lett. 14 547
Google Scholar
[113] Zhan Q 2004 Opt. Express 12 3377
Google Scholar
[114] Min C, Shen Z, Shen J, Zhang Y, Fang H, Yuan G, Du L, Zhu S, Lei T, Yuan X 2013 Nat. Commun. 4 2891
Google Scholar
[115] Zhang Y, Shen J, Xie Z, Dou X, Min C, Lei T, Liu J, Zhu S, Yuan X 2017 Nanoscale 9 10694
Google Scholar
[116] Taylor M A, Waleed M, Stilgoe A B, Rubinsztein-Dunlop H, Bowen W P 2015 Nat. Photon. 9 669
Google Scholar
[117] Huft P R, Kolbow J D, Thweatt J T, Lindquist N C 2017 Nano Lett. 17 7920
Google Scholar
[118] Liu M, Zentgraf T, Liu Y, Bartal G, Zhang X 2010 Nat. Nanotechnol. 5 570
Google Scholar
[119] Wang S B, Chan C T 2014 Nat. Commun. 5 3307
Google Scholar
[120] Zhao Y, Saleh A A E, van de Haar M A, Baum B, Briggs J A, Lay A, Reyes-Becerra O A, Dionne J A 2017 Nat. Nanotechnol. 12 1055
Google Scholar
[121] Chen H, Jiang Y, Wang N, Lu W, Liu S, Lin Z 2015 Opt. Lett. 40 5530
Google Scholar
[122] Kamandi M, Albooyeh M, Veysi M, Rajaei M, Zeng J, Wickramasinghe H K, Capolino F 2018 ACS Photon. 5 4360
Google Scholar
[123] Phillips D B, Padgett M J, Hanna S, Ho Y L D, Carberry D M, Miles M J, Simpson S H 2014 Nat. Photon. 8 400
Google Scholar
[124] Toscano G, Straubel J, Kwiatkowski A, Rockstuhl C, Evers F, Xu H, Mortensen N A, Wubs M 2015 Nat. Commun. 6 7132
Google Scholar
[125] Yang L, Wang H, Fang Y, Li Z 2016 ACS Nano 10 1580
Google Scholar
[126] Wang H 2018 Sci. Rep. 8 9589
Google Scholar
[127] Wang H, Huang S, Xie W, Lin J, Yang L, Li Z 2018 Proc. SPIE 10824, Plasmonics III 10824 1082404
[128] Ni W, Ba H, Lutich A A, Jäckel F, Feldmann J 2012 Nano Lett. 12 4647
Google Scholar
[129] Jiang Y, Narushima T, Okamoto H 2010 Nat. Phys. 6 1005
Google Scholar
[130] Hoshina M, Yokoshi N, Okamoto H, Ishihara H 2018 ACS Photon. 5 318
Google Scholar
[131] Zhang Y, Shen J, Min C, Jin Y, Jiang Y, Liu J, Zhu S, Sheng Y, Zayats A V, Yuan X 2018 Nano Lett. 18 5538
Google Scholar
[132] Ren Y X, Kelly T S, Zhang C, Xu H, Chen Z 2017 Opt. Lett. 42 627
Google Scholar
[133] Lin L, Wang M, Peng X, Lissek E N, Mao Z, Scarabelli L, Adkins E, Coskun S, Unalan H E, Korgel B A, Liz-Marzán L M, Florin E L, Zheng Y 2018 Nat. Photon. 12 195
Google Scholar
计量
- 文章访问数: 14875
- PDF下载量: 511
- 被引次数: 0