搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

包含液相扩散方程简化的锂离子电池电化学模型

刘征宇 杨昆 魏自红 姚利阳

引用本文:
Citation:

包含液相扩散方程简化的锂离子电池电化学模型

刘征宇, 杨昆, 魏自红, 姚利阳
cstr: 32037.14.aps.68.20190159

Electrochemical model of lithium ion battery with simplified liquid phase diffusion equation

Liu Zheng-Yu, Yang Kun, Wei Zi-Hong, Yao Li-Yang
cstr: 32037.14.aps.68.20190159
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 锂离子电池的电化学模型对于电池特性分析和电池管理具有重要意义, 但是准二维(P2D)模型复杂度太高, 为了在保证模型精度的基础上尽量降低复杂度, 本文提出了一种包含液相简化的P2D (LSP2D)模型, 该模型首先基于电化学平均动力学将电池端电压化简成为仅耦合固相Li+浓度cs和液相Li+浓度ce的方程, 然后进一步对表达csce演化规律的偏微分方程进行抛物线近似化简, 使得最终的模型由多项式组成. COMSOL仿真表明在放电倍率为1C时该模型与单粒子(SP)模型的估算精度和速度相当, 但在放电倍率为3C时, 该模型的估算时间比P2D模型减少了99.73%, 与SP模型相当, 估算精度相比SP模型有大幅度提升.
    The pseudo-two-dimensional (P2D) model is the most widely used electrochemical model for lithium-ion batteries. Because of the complexity and the difficulty in using the complete P2D model, many simplified P2D models, such as the single particle model (SP model) and the parabolic profile approximation model (PP model), have been proposed. However, the using of the SP model can cause a large amount of precision to lose in its simplified process, while the PP model has a high complexity. In this paper, we propose a liquid phase simplification P2D (LSP2D) model. The using of the LSP2D model has a small precision loss and a relatively low complexity. The LSP2D model is based on the electrochemical average kinetics of the lithium ion battery. We first simplify the terminal voltage into an equation containing only the solid phase concentration cs and the liquid phase concentration ce. Then we use the partial differential equation to represent the solid phase concentration cs and the liquid phase concentration ce, and then obtain a final model. The simulation environment is based on COMSOL, and the simulation results show that when the discharge rate is 1C, the estimation accuracy and speed from the LSP2D model are similar to those from the SP model. But when the discharge rate is 3C, the estimation time from the LSP2D model is reduced by 99.73% compared with that from the P2D model, and the estimation accuracy is greatly improved compared with the estimation accuracy from the SP model.
      通信作者: 杨昆, 568925173@qq.com
    • 基金项目: 安徽省自然科学基金(批准号: 1808085MF200)和工业和信息化部民用飞机专项科研项目(批准号: MJ-2017-D-26)资助的课题.
      Corresponding author: Yang Kun, 568925173@qq.com
    • Funds: Project supported by the Natural Science Foundation of Anhui Province, China (Grant No. 1808085MF200) and the Ministry of Industry and Information Technology Civil Aircraft Special Scientific Research Project, China (Grant No. MJ-2017-D-26).
    [1]

    Zou C F, Manzie C, Nešic D 2016 IEEE Trans. Control Syst. Technol. 24 1594Google Scholar

    [2]

    Seaman A, Dao T S, McPhee J 2014 J. Power Sources 256 410Google Scholar

    [3]

    Tang S X, Solorio L C, Wang Y, Krstic M 2017 Automatica 83 206Google Scholar

    [4]

    庞辉 2018 67 058201Google Scholar

    Pang H 2018 Acta Phys. Sin. 67 058201Google Scholar

    [5]

    Hu L B, Choi J W, Yang Y, Jeong S, Mantia F L, Cui L F, Cui Y 2009 Proc. Natl. Acad. Sci. 106 51Google Scholar

    [6]

    Lindgren J, Asghar I, Lund P D 2016 Int. J. Energy Res. 40 1576Google Scholar

    [7]

    Bizeray A M, Kim J H, Duncan S R, Howey D A 2018 IEEE Trans. Control Syst. Technol.Google Scholar

    [8]

    Doyle M, Fuller T F, Newman J 1993 J. Electrochem. Soc. 140 1526Google Scholar

    [9]

    Li J, Lotfi N, Landers R G, Park J 2017 J. Electrochem. Soc. 164 A874Google Scholar

    [10]

    Tanim T R, Rahn C D, Wang C Y 2015 J. Dyn. Syst. Meas. Contr. 137 011005Google Scholar

    [11]

    Subramanian V R, Diwakar V D, Tapriyal D 2005 J. Electrochem. Soc. 152 A2002Google Scholar

    [12]

    程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 64 210202Google Scholar

    Cheng Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202Google Scholar

    [13]

    Santhanagopalan S, Guo Q Z, Ramadass P, White R E 2006 J. Power Sources 156 620Google Scholar

    [14]

    Farag M, Fleckenstein M, Habibi S 2017 J. Power Sources 342 351Google Scholar

    [15]

    Zheng L F, Zhang L, Zhu J G, Wang G X, Jiang J C 2016 Appl. Energy 180 424Google Scholar

    [16]

    庞辉 2017 66 238801Google Scholar

    Pang H 2017 Acta Phys. Sin. 66 238801Google Scholar

    [17]

    Prada E, Di-Domenico D, Creff Y, Bernard J, Sauvant-Moynot V, Huet F 2012 J. Electrochem. Soc. 159 A1508Google Scholar

    [18]

    Han X B, Ouyang M G, Lu L G, Li J Q 2015 J. Power Sources 278 814Google Scholar

    [19]

    Dawson-Elli N, Lee S B, Pathak M 2018 J. Electrochem. Soc. 165 A1Google Scholar

    [20]

    Ramadass P, Haran B, Gomadam P M, 2004 J. Electrochem. Soc. 151 A196Google Scholar

  • 图 1  锂离子电池示意图

    Fig. 1.  Lithium ion battery schematic.

    图 2  LSP2D模型简化示意图

    Fig. 2.  Simplified schematic diagram of the LSP2D model.

    图 3  1C和3C放电率下, SP, LSP2D和P2D模型得到的放电末期液相Li+浓度${c_{\rm{e}}}$比较

    Fig. 3.  Comparison of liquid phase Li+ concentration ${c_{\rm{e}}}$ obtained by SP, LSP2D and P2D model at 1C and 3C discharge rates.

    图 4  三种模型在放电率为1C和3C时的放电曲线

    Fig. 4.  Discharge curves of three models at 1C and 3C discharge rates.

    表 1  各参数的值

    Table 1.  Values of parameters.

    ${a_1}$${b_1}$${c_1}$${a_2}$${b_2}$${a_3}$${b_3}$${c_3}$
    $\displaystyle\frac{1}{8} + \alpha \tau $$\displaystyle\frac{{15}}{4}$$ - \displaystyle\frac{{15}}{8}$$1$01$\displaystyle\frac{{30}}{7}\beta \tau $$ - \displaystyle\frac{{15}}{7}\beta \tau $
    下载: 导出CSV

    表 2  锂离子电池参数表

    Table 2.  Parameters lists of Li-ion battery.

    SymbolAnodeCathodeSeparator
    $\sigma$/S·m–1100100
    ${\varepsilon _{\rm s}}$0.490.59
    ${\varepsilon _{\rm e}}$0.4850.3650.724
    Brug4.04.04.0
    ${c_{{\rm{e,0}}}}$/mol·m–3100010001000
    ${c_{{\rm{s,0}}}}$/mol·m–3916.6548977.25
    ${c_{{\rm{s,max}}}}$/mol·m–33055551555
    A/m2$6.03 \!\times\! {10^{ - 4}}$$5.31 \!\times\! {10^{ - 4}}$
    ${D_{\rm{e}}}$/m2·s–1$7.5 \!\times\! {10^{ - 10}}$$7.5 \!\times\! {10^{ - 10}}$$7.5 \!\times\! {10^{ - 10}}$
    ${D_{\rm{s}}}$/m2·s–1$3.9 \!\times\! {10^{ - 14}}$$1.0 \!\times\! {10^{ - 14}}$
    k/mol·(mol·m–3)–1.5$4.854 \!\times\! {10^{ - 6}}$$2.252 \!\times\! {10^{ - 6}}$
    ${R_{\rm{s}}}$/m$2 \!\times\! {10^{ - 6}}$$2 \!\times\! {10^{ - 6}}$
    x/m$8.8 \!\times\! {10^{ - 5}}$$8.0 \!\times\! {10^{ - 5}}$$8.0 \!\times\! {10^{ - 5}}$
    ${R_{{\rm{SEI}}}}/\Omega$·m–20.01
    I/A·m–220
    $\alpha $0.50.5
    F/C·mol96487
    R/J·mol·K–18.314
    T/K298.15
    下载: 导出CSV

    表 3  放电率为1C和3C时三种模型估算电池端电压的平均误差

    Table 3.  Average error of the battery terminal voltage is estimated by three models when the discharge rate is 1C and 3C.

    ModelAverage error at
    discharge rate 1C/V
    Average error at
    discharge rate 3C/V
    P2D00
    LSP2D0.00560.014
    SP0.00520.142
    下载: 导出CSV

    表 4  比较三种模型估算速度

    Table 4.  Comparison of the estimated speeds of the three models.

    ModelTime for 50 cycles/s
    P2D7860
    LSP2D21
    SP12
    下载: 导出CSV
    Baidu
  • [1]

    Zou C F, Manzie C, Nešic D 2016 IEEE Trans. Control Syst. Technol. 24 1594Google Scholar

    [2]

    Seaman A, Dao T S, McPhee J 2014 J. Power Sources 256 410Google Scholar

    [3]

    Tang S X, Solorio L C, Wang Y, Krstic M 2017 Automatica 83 206Google Scholar

    [4]

    庞辉 2018 67 058201Google Scholar

    Pang H 2018 Acta Phys. Sin. 67 058201Google Scholar

    [5]

    Hu L B, Choi J W, Yang Y, Jeong S, Mantia F L, Cui L F, Cui Y 2009 Proc. Natl. Acad. Sci. 106 51Google Scholar

    [6]

    Lindgren J, Asghar I, Lund P D 2016 Int. J. Energy Res. 40 1576Google Scholar

    [7]

    Bizeray A M, Kim J H, Duncan S R, Howey D A 2018 IEEE Trans. Control Syst. Technol.Google Scholar

    [8]

    Doyle M, Fuller T F, Newman J 1993 J. Electrochem. Soc. 140 1526Google Scholar

    [9]

    Li J, Lotfi N, Landers R G, Park J 2017 J. Electrochem. Soc. 164 A874Google Scholar

    [10]

    Tanim T R, Rahn C D, Wang C Y 2015 J. Dyn. Syst. Meas. Contr. 137 011005Google Scholar

    [11]

    Subramanian V R, Diwakar V D, Tapriyal D 2005 J. Electrochem. Soc. 152 A2002Google Scholar

    [12]

    程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 64 210202Google Scholar

    Cheng Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202Google Scholar

    [13]

    Santhanagopalan S, Guo Q Z, Ramadass P, White R E 2006 J. Power Sources 156 620Google Scholar

    [14]

    Farag M, Fleckenstein M, Habibi S 2017 J. Power Sources 342 351Google Scholar

    [15]

    Zheng L F, Zhang L, Zhu J G, Wang G X, Jiang J C 2016 Appl. Energy 180 424Google Scholar

    [16]

    庞辉 2017 66 238801Google Scholar

    Pang H 2017 Acta Phys. Sin. 66 238801Google Scholar

    [17]

    Prada E, Di-Domenico D, Creff Y, Bernard J, Sauvant-Moynot V, Huet F 2012 J. Electrochem. Soc. 159 A1508Google Scholar

    [18]

    Han X B, Ouyang M G, Lu L G, Li J Q 2015 J. Power Sources 278 814Google Scholar

    [19]

    Dawson-Elli N, Lee S B, Pathak M 2018 J. Electrochem. Soc. 165 A1Google Scholar

    [20]

    Ramadass P, Haran B, Gomadam P M, 2004 J. Electrochem. Soc. 151 A196Google Scholar

计量
  • 文章访问数:  18231
  • PDF下载量:  420
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-27
  • 修回日期:  2019-03-03
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-05

/

返回文章
返回
Baidu
map