搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

存在障碍物时电波传播抛物线方程分析及其验证

魏乔菲 尹成友 范启蒙

引用本文:
Citation:

存在障碍物时电波传播抛物线方程分析及其验证

魏乔菲, 尹成友, 范启蒙

Research and verification for parabolic equation method of radio wave propagation in obstacle environment

Wei Qiao-Fei, Yin Cheng-You, Fan Qi-Meng
PDF
导出引用
  • 双向抛物线方法主要用于起伏地形下电波传播问题的计算,该算法本身无法处理地面存在障碍物,尤其是真实环境下障碍物与地面为不同媒质的情况.因此本文提出一种用于存在障碍物时电波传播计算的抛物线方程新算法.该方法采用区域分解,对不同障碍物区域的场值进行分区计算,并对计算结果进行相位修正,从而实现该情况下空间中场值的计算.在此基础上,使用矩量法来精确验证抛物线方法的计算精度.通过实例分析,证明了存在障碍物时新算法的精确性,为之后求解真实环境下的电波传播问题提供了参考.
    In recent years, the two-way parabolic equation method (2WPE) has been widely utilized for studying the tropospheric ground-wave propagation under the irregular terrain. This algorithm can deal with the influences of the irregular terrain characteristic and the different electromagnetic parameters of the surface structure on wave propagation. However, there are still some defects in 2WPE method. Firstly, the method considers the irregular terrain and obstacles as a whole, so it cannot deal with the situation where the medium parameters of obstacles and the ground are different. Secondly, its calculation precision is limited with the inclination of the undulating terrain: if there are obstacles the upper bound of the inclination is easily broken through. Therefore, in this paper, a novel two-way parabolic equation method is proposed for analyzing the radio wave propagation in obstacle environment. According to the principle of domain decomposition, the obstacle zones are divided into two domains in the new algorithm, and the two subdomains are calculated, respectively. Meanwhile, in order to avoid the calculation error caused by the abrupt truncation of the obstacle zone, the field at the upper boundary of obstacles is modified to ensure the continuity of tangential field. To further improve the accuracy of the new algorithm, according to the historical transmission paths, we exactly retrieve the phases of each forward and backward wave, especially when stepping in and out of the obstacles. Furthermore, the method of moment (MoM) is used to verify the calculation accuracy of the new algorithm in obstacle environment. Although the accuracy of the MoM is very high, it also requires a great deal of calculation resources: it can only be employed to compute the fields in short distance. To overcome the difficulty, we use the image principle in the obstacle environment and do not subdivide the ground into segments; therefore the verification accuracy can be improved. On this basis, to unify the source setting of the new algorithm and the MoM, the equivalent source model is used to set the initial field. Finally, through numerical experiments, the simulation results of both methods agree very well, so the effectiveness of the boundary correction and the phase correction which are presented in this paper are both verified. The accuracy and superiority of the new algorithm in obstacle environment are also demonstrated. To sum up, the novel two-way parabolic equation method can be used to accurately calculate the field of the space in the obstacle environment, and lays the foundation for the field calculation of radio wave propagation in real environment.
      通信作者: 尹成友, cyouyin@sina.com
    • 基金项目: 总装备部预研基金(批准号:51333020201)资助的课题.
      Corresponding author: Yin Cheng-You, cyouyin@sina.com
    • Funds: Project supported by the General Equipment Department Pre-Research Foundation, China (Grant No. 51333020201).
    [1]

    Ozlem O 2009 IEEE Trans. Antenn. Propag. 57 2706

    [2]

    Ozlem O, Gokhan A, Mustafa K, Levent S 2011 Comput. Phys. Commun. 182 2638

    [3]

    Wang K, Long Y L 2012 IEEE Trans. Antenn. Propag. 60 4467

    [4]

    Zhang P, Bai L, Wu Z S, Guo L X 2016 IEEE Trans. Antenn. Propag. Mag. 58 31

    [5]

    Wang D D, Xi X L, Pu Y R, Liu J F, Zhou L L 2016 IEEE Trans. Antenn. Wireless Propag. Lett. 15 734

    [6]

    Yuan X J, Lin W G 1993 Chin. Phys. Lett. 10 57

    [7]

    Omaki N, Yun Z Q, Iskander M F 2012 2012 IEEE International Conference on Wireless Information Technology and Systems (ICWITS) Maui, USA, November 11-16, 2012 p1

    [8]

    Kuttler J R 1999 IEEE Trans. Antenn. Propag. 47 1131

    [9]

    Donohue D J, Kuttler J R 2000 IEEE Trans. Antenn. Propag. 48 260

    [10]

    Beilis A, Tappert F D 1979 J. Acoust. Soc. Am. 66 811

    [11]

    Wang Y J, Guo L X, Li Q L 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE) Guilin, China, October 18-21, 2016 p404

    [12]

    Ozgun O, Sevgi L 2012 Aces J. 27 376

    [13]

    Gokhan A, Levent S 2013 IEEE Trans. Antenn. Propag. Mag. 55 244

    [14]

    Zhu J, Yin C Y, Wei Q F 2016 J. Microwaves 32 32 (in Chinese) [祝杰, 尹成友, 魏乔菲 2016 微波学报 32 32]

    [15]

    Omak N, Yun Z Q, Iskander M F 2012 Antennas and Propagation Society International Symposium (APSURSI) Chicago, USA, July 8-14, 2012, p1

    [16]

    Lu J, Zhou H C 2016 Chin. Phys. B 25 90203

    [17]

    Pvel V, Pvel P 2007 IEEE Antenn. Wireless Propag. Lett. 6 152

    [18]

    Sheng X Q 2004 Computational Electromagnetic Theory (Beijing: Science Press) pp49-53 (in Chinese) [盛新庆 2004 计算电磁学要论 (北京: 科学出版社) 第49-53页]

    [19]

    Zhu J, Yin C Y 2016 J. Microwaves 32 26 (in Chinese) [祝杰, 尹成友 2016 微波学报 32 26]

    [20]

    Yin C Y, Zhu J, Wei Q F 2016 37th Progress in Electromagnetics Shanghai, China, August 8-11, 2016 p1655

    [21]

    Levy M 2000 Parabolic Equation Methods for Electromagnetic Wave Propagation (London: IEE Press) pp149, 287-291

  • [1]

    Ozlem O 2009 IEEE Trans. Antenn. Propag. 57 2706

    [2]

    Ozlem O, Gokhan A, Mustafa K, Levent S 2011 Comput. Phys. Commun. 182 2638

    [3]

    Wang K, Long Y L 2012 IEEE Trans. Antenn. Propag. 60 4467

    [4]

    Zhang P, Bai L, Wu Z S, Guo L X 2016 IEEE Trans. Antenn. Propag. Mag. 58 31

    [5]

    Wang D D, Xi X L, Pu Y R, Liu J F, Zhou L L 2016 IEEE Trans. Antenn. Wireless Propag. Lett. 15 734

    [6]

    Yuan X J, Lin W G 1993 Chin. Phys. Lett. 10 57

    [7]

    Omaki N, Yun Z Q, Iskander M F 2012 2012 IEEE International Conference on Wireless Information Technology and Systems (ICWITS) Maui, USA, November 11-16, 2012 p1

    [8]

    Kuttler J R 1999 IEEE Trans. Antenn. Propag. 47 1131

    [9]

    Donohue D J, Kuttler J R 2000 IEEE Trans. Antenn. Propag. 48 260

    [10]

    Beilis A, Tappert F D 1979 J. Acoust. Soc. Am. 66 811

    [11]

    Wang Y J, Guo L X, Li Q L 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE) Guilin, China, October 18-21, 2016 p404

    [12]

    Ozgun O, Sevgi L 2012 Aces J. 27 376

    [13]

    Gokhan A, Levent S 2013 IEEE Trans. Antenn. Propag. Mag. 55 244

    [14]

    Zhu J, Yin C Y, Wei Q F 2016 J. Microwaves 32 32 (in Chinese) [祝杰, 尹成友, 魏乔菲 2016 微波学报 32 32]

    [15]

    Omak N, Yun Z Q, Iskander M F 2012 Antennas and Propagation Society International Symposium (APSURSI) Chicago, USA, July 8-14, 2012, p1

    [16]

    Lu J, Zhou H C 2016 Chin. Phys. B 25 90203

    [17]

    Pvel V, Pvel P 2007 IEEE Antenn. Wireless Propag. Lett. 6 152

    [18]

    Sheng X Q 2004 Computational Electromagnetic Theory (Beijing: Science Press) pp49-53 (in Chinese) [盛新庆 2004 计算电磁学要论 (北京: 科学出版社) 第49-53页]

    [19]

    Zhu J, Yin C Y 2016 J. Microwaves 32 26 (in Chinese) [祝杰, 尹成友 2016 微波学报 32 26]

    [20]

    Yin C Y, Zhu J, Wei Q F 2016 37th Progress in Electromagnetics Shanghai, China, August 8-11, 2016 p1655

    [21]

    Levy M 2000 Parabolic Equation Methods for Electromagnetic Wave Propagation (London: IEE Press) pp149, 287-291

  • [1] 王攀, 王仲根, 孙玉发, 聂文艳. 新型压缩感知计算模型分析三维电大目标电磁散射特性.  , 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] 刘强, 周海京, 董志伟. 非平行线缆结构电磁耦合建模与准确性验证.  , 2022, 71(18): 180701. doi: 10.7498/aps.71.20220185
    [3] 李静和, 何展翔, 孟淑君, 杨俊, 李文杰, 廖小倩. 三维地形频率域井筒电磁场区域积分方程法模拟.  , 2019, 68(14): 140202. doi: 10.7498/aps.68.20190330
    [4] 丁亚辉, 孙玉发, 朱金玉. 一种基于压缩感知的三维导体目标电磁散射问题的快速求解方法.  , 2018, 67(10): 100201. doi: 10.7498/aps.67.20172543
    [5] 郝书吉, 张文超, 张雅彬, 杨巨涛, 马广林. 中低纬度电离层偶发E层电波传播建模.  , 2017, 66(11): 119401. doi: 10.7498/aps.66.119401
    [6] 柴水荣, 郭立新. 基于压缩感知的一维海面与二维舰船复合后向电磁散射快速算法研究.  , 2015, 64(6): 060301. doi: 10.7498/aps.64.060301
    [7] 冯菊, 廖成, 张青洪, 盛楠, 周海京. 蒸发波导中的时间反演抛物方程定位法.  , 2014, 63(13): 134101. doi: 10.7498/aps.63.134101
    [8] 陈明生, 王时文, 马韬, 吴先良. 基于压缩感知的目标频空电磁散射特性快速分析.  , 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [9] 刘智惟, 包为民, 李小平, 刘东林. 一种考虑电磁波驱动效应的等离子碰撞频率分段计算方法.  , 2014, 63(23): 235201. doi: 10.7498/aps.63.235201
    [10] 王哲, 王秉中. 压缩感知理论在矩量法中的应用.  , 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [11] 周明善, 徐铭. 膨胀石墨 3 mm波消光数值计算.  , 2013, 62(9): 097201. doi: 10.7498/aps.62.097201
    [12] 王仲根, 孙玉发, 王国华. 应用改进的特征基函数法和自适应交叉近似算法快速分析导体目标电磁散射特性.  , 2013, 62(20): 204102. doi: 10.7498/aps.62.204102
    [13] 张青洪, 廖成, 盛楠, 陈伶璐. 森林环境电波传播抛物方程模型的改进研究.  , 2013, 62(20): 204101. doi: 10.7498/aps.62.204101
    [14] 唐光明, 苗俊刚, 董金明. 一种介质-金属加载圆孔单元厚屏频率选择表面.  , 2012, 61(6): 068402. doi: 10.7498/aps.61.068402
    [15] 孟继德, 包伯成, 徐强. 二维抛物线离散映射的动力学研究.  , 2011, 60(1): 010504. doi: 10.7498/aps.60.010504
    [16] 梁玉, 郭立新, 王蕊. 粗糙面重构问题的混合算法研究.  , 2011, 60(3): 034102. doi: 10.7498/aps.60.034102
    [17] 周玉淑, 曹洁. 有限区域风场的分解和重建.  , 2010, 59(4): 2898-2906. doi: 10.7498/aps.59.2898
    [18] 方春易, 张树仁, 卢俊, 汪剑波, 孙连春. 一种圆孔单元厚屏频率选择表面结构的传输特性研究.  , 2010, 59(7): 5023-5027. doi: 10.7498/aps.59.5023
    [19] 王 蕊, 郭立新, 秦三团, 吴振森. 粗糙海面及其上方导体目标复合电磁散射的混合算法研究.  , 2008, 57(6): 3473-3480. doi: 10.7498/aps.57.3473
    [20] 谭维翰, 刘仁红. 二分岔理论的抛物线近似.  , 1990, 39(7): 35-39. doi: 10.7498/aps.39.35-2
计量
  • 文章访问数:  5785
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-14
  • 修回日期:  2017-03-20
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map