搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于材料基因组方法的锂电池新材料开发

肖睿娟 李泓 陈立泉

引用本文:
Citation:

基于材料基因组方法的锂电池新材料开发

肖睿娟, 李泓, 陈立泉

Development of new lithium battery materials by material genome initiative

Xiao Rui-Juan, Li Hong, Chen Li-Quan
PDF
导出引用
  • 近年来,在锂二次电池新材料的研发过程中逐渐建立了基于材料基因组思想的高通量计算理论工具与研究平台.在该平台上,通过将不同精度的计算方法组合,实现了基于离子输运性质的材料筛选;通过将信息学中数据挖掘算法引入高通量计算数据的分析,证实了材料大数据解读的可行性.上述平台实现了在锂电池固体电解质的高通量筛选、优化和设计上进行新材料研发的示范应用,通过高通量计算筛选获得了两种可用于富锂正极包覆材料的化合物Li2SiO3和Li2SnO3,有效改善了富锂正极的循环稳定性;通过对掺杂策略的高通量筛选,获得了提高固体电解质-Li3PS4离子电导率和稳定性的方案;通过高通量结构预测设计了全新的氧硫化物固体电解质LiAlSO;并在零应变电极材料结构与性能的构效关系研究中进行了大数据分析的尝试,分析了零应变电极材料的设计依据.上述材料基因组方法在锂电池材料研发中的应用为在其他类型材料研发中推广这种新的研发模式提供了可能.
    After the continuous research on the discovering new materials based on theoretical methods and material genome initiative, the high-throughput simulation platform is established. With this new research mode and platform, the screening, optimization and design of lithium battery materials are realized by using lithium migration properties as criteria. The attempt at introducing machine learning method into material design is also made. With the high-throughput bond-valence calculations, two coating materials for Li-rich cathode are found, the modified -Li3PS4 and a new layered oxysulfide as novel lithium superionic conductors are designed, and the relationship between the volume change of electrode during delithiation and the atomic structure is investigated. The application of the material genome method to the development of lithium battery materials provides the possibility to promote this new research and development model in other types of materials.
      通信作者: 肖睿娟, rjxiao@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:51772321)、北京市科技计划项目(批准号:D171100005517001)、国家重点研发计划(批准号:2017YFB0701602)和中国科学院青年创新促进会(批准号:2016005)资助的课题.
      Corresponding author: Xiao Rui-Juan, rjxiao@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51772321), the Beijing S T Project, China (Grant No. D171100005517001), the National Key Research and Development Program of China (Grant No. 2017YFB0701602), and the Youth Innovation Promotion Association CAS (Grant No. 2016005).
    [1]

    Tarascon J M, Armand M 2001 Nature 414 359

    [2]

    Goodenough J B, Kim Y 2010 Chem. Mater. 22 587

    [3]

    Li H, Wang Z X, Chen L Q, Huang X 2009 Adv. Mater. 21 4593

    [4]

    Jain A, Hautier G, Moore C J, Ong S P, Fischer C C, Mueller T, Ceder G 2011 Comput. Mater. Sci. 50 2295

    [5]

    Wu M S, Xu B, Ouyang C Y 2016 Chin. Phys. B 25 018206

    [6]

    Knauth P 2009 Solid State Ionics 180 911

    [7]

    Takada K 2013 Acta Mater. 61 759

    [8]

    Yao X, Huang J, Yin J, Peng G, Huang Z, Gao C, Liu D, Xu X 2016 Chin. Phys. B 25 018802

    [9]

    Tatsumisago M, Nagao M, Hayashi A 2013 J. Asian Ceram. Soc. 1 17

    [10]

    Huggins R A 1999 J. Power Sources 81-82 13

    [11]

    Chen Z H, Christensen L, Dahn J R 2003 Electrochem. Commun. 5 919

    [12]

    Xiao R J, Li H, Chen L Q 2015 J. Materiomics 1 325

    [13]

    Anurova N A, Blatov V A 2009 Acta Crystallogr. B 65 426

    [14]

    Brown I D 2009 Chem. Rev. 109 6858

    [15]

    Adams S, Prasada Rao R 2011 Phys. Status Solidi A 208 1746

    [16]

    Meng Y S, Elena Arroyo-de Dompablo M 2009 Energy Environ. Sci. 2 589

    [17]

    Xiao R J, Li H, Chen L Q 2015 Sci. Rep. 5 14227

    [18]

    Wang D, Zhang X, Xiao R J, Lu X, Li Y, Xu T, Pan D, Hu Y S, Bai Y 2018 Electrochim. Acta 265 244

    [19]

    Kamaya N 2011 Nat. Mater. 10 682

    [20]

    Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M 2005 Adv. Mater. 17 918

    [21]

    Mo Y, Ong S P, Ceder G 2012 Chem. Mater. 24 15

    [22]

    Tachez M, Malugani J P, Robert G 1984 Solid State Ionics 14 181

    [23]

    Wang X L, Xiao R J, Li H, Chen L Q 2016 Phys. Chem. Chem. Phys. 18 21269

    [24]

    Chen Y, Xi X, Yim W L, Peng F, Wang Y, Wang H, Chen Z 2013 J. Phys. Chem. C 117 25677

    [25]

    Zhang X, Wang Y, L J, Zhu C, Li Q, Zhang M, Li Q, Ma Y 2013 J. Chem. Phys. 138 114101

    [26]

    Zhong X, Wang H, Zhang J, Liu H, Zhang S, Song H F, Yang G, Zhang L, Ma Y 2016 Phys. Rev. Lett. 116 057002

    [27]

    Wang Y, L J, Zhu L, Ma Y 2012 Comput. Phys. Commun. 183 2063

    [28]

    Wang X L, Xiao R J, Li H, Chen L Q 2017 Phys. Rev. Lett. 118 195901

    [29]

    Ward L, Agrawal A, Choudhary A, Wolverton C 2016 npj Comput. Mater. 2 16028

    [30]

    Mueller T, Kusne A G, Pamprasad R 2016 Rev. Comput. Chem. 29 186

    [31]

    Ghiringhelli L M, Vybiral J, Levchenko S V, Draxl C, Scheffler M 2015 Phys. Rev. Lett. 114 105503

    [32]

    Rupp M, Tkatchenko A, Muller K R, Anatole von Lilienfeld O 2012 Phys. Rev. Lett. 108 058301

    [33]

    Artrith N, Urban A 2016 Comput. Mater. Sci. 114 135

    [34]

    Wang Y S, Yu X Q, Su S Y, Bai J M, Xiao R J, Hu Y S 2013 Nat. Commun. 4 2365

    [35]

    Wang X L, Xiao R J, Li H, Chen L Q 2017 J. Materiomics 3 178

  • [1]

    Tarascon J M, Armand M 2001 Nature 414 359

    [2]

    Goodenough J B, Kim Y 2010 Chem. Mater. 22 587

    [3]

    Li H, Wang Z X, Chen L Q, Huang X 2009 Adv. Mater. 21 4593

    [4]

    Jain A, Hautier G, Moore C J, Ong S P, Fischer C C, Mueller T, Ceder G 2011 Comput. Mater. Sci. 50 2295

    [5]

    Wu M S, Xu B, Ouyang C Y 2016 Chin. Phys. B 25 018206

    [6]

    Knauth P 2009 Solid State Ionics 180 911

    [7]

    Takada K 2013 Acta Mater. 61 759

    [8]

    Yao X, Huang J, Yin J, Peng G, Huang Z, Gao C, Liu D, Xu X 2016 Chin. Phys. B 25 018802

    [9]

    Tatsumisago M, Nagao M, Hayashi A 2013 J. Asian Ceram. Soc. 1 17

    [10]

    Huggins R A 1999 J. Power Sources 81-82 13

    [11]

    Chen Z H, Christensen L, Dahn J R 2003 Electrochem. Commun. 5 919

    [12]

    Xiao R J, Li H, Chen L Q 2015 J. Materiomics 1 325

    [13]

    Anurova N A, Blatov V A 2009 Acta Crystallogr. B 65 426

    [14]

    Brown I D 2009 Chem. Rev. 109 6858

    [15]

    Adams S, Prasada Rao R 2011 Phys. Status Solidi A 208 1746

    [16]

    Meng Y S, Elena Arroyo-de Dompablo M 2009 Energy Environ. Sci. 2 589

    [17]

    Xiao R J, Li H, Chen L Q 2015 Sci. Rep. 5 14227

    [18]

    Wang D, Zhang X, Xiao R J, Lu X, Li Y, Xu T, Pan D, Hu Y S, Bai Y 2018 Electrochim. Acta 265 244

    [19]

    Kamaya N 2011 Nat. Mater. 10 682

    [20]

    Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M 2005 Adv. Mater. 17 918

    [21]

    Mo Y, Ong S P, Ceder G 2012 Chem. Mater. 24 15

    [22]

    Tachez M, Malugani J P, Robert G 1984 Solid State Ionics 14 181

    [23]

    Wang X L, Xiao R J, Li H, Chen L Q 2016 Phys. Chem. Chem. Phys. 18 21269

    [24]

    Chen Y, Xi X, Yim W L, Peng F, Wang Y, Wang H, Chen Z 2013 J. Phys. Chem. C 117 25677

    [25]

    Zhang X, Wang Y, L J, Zhu C, Li Q, Zhang M, Li Q, Ma Y 2013 J. Chem. Phys. 138 114101

    [26]

    Zhong X, Wang H, Zhang J, Liu H, Zhang S, Song H F, Yang G, Zhang L, Ma Y 2016 Phys. Rev. Lett. 116 057002

    [27]

    Wang Y, L J, Zhu L, Ma Y 2012 Comput. Phys. Commun. 183 2063

    [28]

    Wang X L, Xiao R J, Li H, Chen L Q 2017 Phys. Rev. Lett. 118 195901

    [29]

    Ward L, Agrawal A, Choudhary A, Wolverton C 2016 npj Comput. Mater. 2 16028

    [30]

    Mueller T, Kusne A G, Pamprasad R 2016 Rev. Comput. Chem. 29 186

    [31]

    Ghiringhelli L M, Vybiral J, Levchenko S V, Draxl C, Scheffler M 2015 Phys. Rev. Lett. 114 105503

    [32]

    Rupp M, Tkatchenko A, Muller K R, Anatole von Lilienfeld O 2012 Phys. Rev. Lett. 108 058301

    [33]

    Artrith N, Urban A 2016 Comput. Mater. Sci. 114 135

    [34]

    Wang Y S, Yu X Q, Su S Y, Bai J M, Xiao R J, Hu Y S 2013 Nat. Commun. 4 2365

    [35]

    Wang X L, Xiao R J, Li H, Chen L Q 2017 J. Materiomics 3 178

  • [1] 耿晓彬, 李顶根, 徐波. 固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究.  , 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [2] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展.  , 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [3] 王浩, 曹珊珊, 苏俊豪, 徐海涛, 王震, 郑加金, 韦玮. 基于双包层光纤布拉格光栅传感器的锂电池组温度场监控.  , 2022, 71(10): 104207. doi: 10.7498/aps.71.20212302
    [4] 何兵, 练宇翔, 吴木生, 罗文崴, 杨慎博, 欧阳楚英. 阳离子调控对卤化物固态电解质性能的改善.  , 2022, 71(20): 208201. doi: 10.7498/aps.71.20221050
    [5] 陆敬予, 柯承志, 龚正良, 李德平, 慈立杰, 张力, 张桥保. 原位表征技术在全固态锂电池中的应用.  , 2021, 70(19): 198102. doi: 10.7498/aps.70.20210531
    [6] 游逸玮, 崔建文, 张小锋, 郑锋, 吴顺情, 朱梓忠. 锂磷氧氮(LiPON)固态电解质与Li负极界面特性.  , 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [7] 余启鹏, 刘琦, 王自强, 李宝华. 全固态金属锂电池负极界面问题及解决策略.  , 2020, 69(22): 228805. doi: 10.7498/aps.69.20201218
    [8] 赵宁, 穆爽, 郭向欣. 石榴石型固态锂电池中的物理问题.  , 2020, 69(22): 228804. doi: 10.7498/aps.69.20201191
    [9] 邵光伟, 郭珊珊, 于瑞, 陈南梁, 叶美丹, 刘向阳. 可拉伸超级电容器的研究进展:电极、电解质和器件.  , 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [10] 张念, 任国玺, 章辉, 周櫈, 刘啸嵩. 石榴石型固态电解质表界面问题及优化的研究进展.  , 2020, 69(22): 228806. doi: 10.7498/aps.69.20201533
    [11] 张桥保, 龚正良, 杨勇. 硫化物固态电解质材料界面及其表征的研究进展.  , 2020, 69(22): 228803. doi: 10.7498/aps.69.20201581
    [12] 冯吴亮, 王飞, 周星, 吉晓, 韩福东, 王春生. 固态电解质与电极界面的稳定性.  , 2020, 69(22): 228206. doi: 10.7498/aps.69.20201554
    [13] 梁宇皓, 范丽珍. 固态锂电池中的机械力学失效及解决策略.  , 2020, 69(22): 226201. doi: 10.7498/aps.69.20200713
    [14] 郭立强, 陶剑, 温娟, 程广贵, 袁宁一, 丁建宁. 玉米淀粉固态电解质质子\电子杂化突触晶体管.  , 2017, 66(16): 168501. doi: 10.7498/aps.66.168501
    [15] 柳延辉. 非晶合金的高通量制备与表征.  , 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [16] 史茂雷, 刘磊, 田芳慧, 王鹏飞, 李嘉俊, 马蕾. 无锂助熔剂B2O3对Li1.3Al0.3Ti1.7(PO4)3固体电解质离子电导率的影响.  , 2017, 66(20): 208201. doi: 10.7498/aps.66.208201
    [17] 骆军委, 李树深. 半导体材料基因组计划:硅基发光材料.  , 2015, 64(20): 207803. doi: 10.7498/aps.64.207803
    [18] 胡永刚, 肖建中, 夏风, 武玺旺, 闫双志. 基于热膨胀性质的ZrO2 固体电解质性能与相关系模型.  , 2010, 59(10): 7447-7451. doi: 10.7498/aps.59.7447
    [19] 俞文海, 丁屹. 固体电解质与电极之间界面的分数维模型及其频率响应.  , 1989, 38(10): 1621-1627. doi: 10.7498/aps.38.1621
    [20] 郭常霖, 陆昌伟, 沈定坤, 俞志中. 二次锂电池电极材料非晶态MoS3的结构研究.  , 1985, 34(10): 1336-1341. doi: 10.7498/aps.34.1336
计量
  • 文章访问数:  10400
  • PDF下载量:  741
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-11
  • 修回日期:  2018-04-27
  • 刊出日期:  2019-06-20

/

返回文章
返回
Baidu
map