-
非晶合金作为一种快速凝固形成的新型合金材料,引起了材料研究者的极大兴趣.微观结构上长程无序、短程有序的特征使其具有独特的物理、化学和力学性能,在许多领域展现出良好的应用前景,尤其是有望成为核反应堆、航空航天等强辐照环境下的备选结构材料.本文深入探讨非晶合金的辐照效应,主要讨论离子辐照对非晶合金微观结构、宏观力学性能以及其他物理化学性能的影响,可为进一步理解非晶合金的微观结构和宏观力学性能之间的关系提供有效的实验和理论基础,也可为非晶合金在强辐照环境下的服役性能预测提供实验依据,对推进非晶合金这一先进材料的工程化应用具有重要的理论与实际意义.Metallic glasses (MGs), as new disordered materials prepared by rapidly quenching melted alloys, have attracted tremendous attention in the material science community. Due to their long-ranged disorderd and short-ranged ordered structures, MGs usually exhibit uniquely physical, chemical and mechanical properties, which give rise to promising applications in many fields, and especially they are expected to be potentially structural materials used in irradiation conditions, such as in nuclear reactors and aerospace.In this paper, the effects of ion irradiation on the microstructure, mechanical properties, physical, and chemical properties of MGs are reviewed. It is found that the effects of ion irradiation on the microstructures and mechanical properties depend on the ion energy as well as the composition of MG. When high energy ions interact with a solid, the collisions take place between the incident ions and atoms of the solid, which are dominated by inelastic processes (electronic stopping) and elastic processes (nuclear stopping). The inelastic processes result in the excitation and ionization of substrate atoms. In contrast, the elastic processes lead to ballistic atomic displacements. Nuclear stopping can produce structure defects and irradiation damage in glassy phase. The collisions between the incident ions and the target atoms in MGs can cause the target atoms to deviate from their original positions, and leave a large number of vacancies and interstitial atoms behind. The separations between the vacancies and the interstitial atoms form displacement cascades. The interstitial atoms with a low kinetic energy can transfer self-energies to thermal energies, resulting in a thermal spike due to the accumulation of a large quantity of the thermal energies from interstitial atoms. Such a thermal spike will cause MGs to melt and resolidify, which therefore makes the structure of glassy phase changed. Furthermore, the ion irradiation can modify the structures of MGs by introducing excessive free volumes and promoting the mobilities of atoms, which leads to the dilatation of the glassy phase and nanocrystallization. The increase of free volumes softens the MGs, and then causes the plastic deformation mechanism to transform from a heterogeneous deformation to a homogeneous deformation, which significantly enhances the plastic deformation ability.This review paper can not only improve the understanding of the relationship between microstructure evolution and macroscopic mechanical properties, and provide an experimental and fundamental basis to understand the deformation mechanism of MGs, but also summarize the performances of MGs under high dosage of ion irradiation. Moreover, it is of fundamental and practical importance for engineering applications of such advanced materials.
-
Keywords:
- metallic glasses /
- ion irradiation /
- microstructure /
- mechanical properties
[1] Was G S 2007 Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer)
[2] Williams J C, Starke E A 2003 Acta Mater. 51 5775
[3] Greer A L 1995 Science 267 1947
[4] Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45
[5] Inoue A 2000 Acta Mater. 48 279
[6] Ritchie R O 2011 Nat. Mater. 10 817
[7] Sun B A, Wang W H 2015 Prog. Mater. Sci. 74 211
[8] Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L, Ritchie R O 2011 Nat. Mater. 10 123
[9] Mayr S G 2005 Phys. Rev. B 71 144109
[10] Mayr S G, Averback R S 2001 Phys. Rev. Lett. 87 196106
[11] Mayr S G, Ashkenazy Y, Albe K, Averback R S 2003 Phys. Rev. Lett. 90 055505
[12] Klaumunzer S, Schumacher G, Rentzsch S, Vogl G 1982 Acta Metall. 30 1493
[13] Luo W D, Yang B, Chen G L 2011 Scripta Mater. 64 625
[14] Carter J, Fu E G, Martin M, Xie G Q, Zhang X, Wang Y Q, Wijesundera D, Wang X M, Chu W K, Shao L 2009 Scripta Mater. 61 265
[15] Shao L, Gorman B P, Aitkaliyeva A, Theodore N D, Xie G Q 2012 Appl. Phys. Lett. 101 041901
[16] Carter J, Fu E G, Martin M, Xie G Q, Zhang X, Wang Y Q, Wijesundera D, Wang X M, Chu W K, McDeavitt S M, Shao L 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 2827
[17] Huang Y J, Fan H B, Zhou X Y, Xue P, Ning Z L, Daisenberger D, Sun J F, Shen J 2015 Scripta Mater. 103 41
[18] Bian X L, Wang G, Chen H C, Yan L, Wang J G, Wang Q, Hu P F, Ren J L, Chan K C, Zheng N, Teresiak A, Gao Y L, Zhai Q J, Eckert J, Beadsworth J, Dahmen K A, Liaw P K 2016 Acta Mater. 106 66
[19] Perez-Bergquist A G, Bei H B, Leonard K J, Zhang Y W, Zinkle S J 2014 Intermetallics 53 62
[20] Myers M, Fu E G, Myers M, Wang H, Xie G Q, Wang X, Chu W K, Shao L 2010 Scripta Mater. 63 1045
[21] Myers M, Charnvanichborikarn S, Wei C, Luo Z, Xie G, Kucheyev S, Lucca D, Shao L 2012 Scripta Mater. 67 887
[22] Rizza G, Dunlop A, Jaskierowicz G, Kopcewicz G 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 226 609
[23] Chen H C, Cao G Q, Liu R D, Wang G, Yan L, Zhou X T 2015 J. Appl. Phys. 118 035308
[24] Kawasegia N, Morita N, Yamada N, Takano N, Oyama N, Ashida K, Taniguchi J, MiyamotoI, Momota S, Ofune H 2006 Appl. Phys. Lett. 89 143115
[25] Yang Y Z, Tao P J, Li G Q, Mu Z X, Ru Q, Xie Z W, Chen X C 2009 Intermetallics 17 722
[26] Qin W, Szpunar J A, Umakoshi Y 2011 Acta Mater. 59 2221
[27] Thomas S, Thomas H, Avasthi D K, Tripathi A, Ramanujan R V, Anantharaman M R 2009 J. Appl. Phys. 105 033910
[28] Gutzmann A, Klaumnzer S, Meier P 1995 Phys. Rev. Lett. 74 2256
[29] Ridgway M C, Bierschenk T, Giulian R, Afra B, Rodriguez M D, Araujo L L, Byrne A P, Kirby N, Pakarinen O H, Djurabekova F, Nordlund K, Schleberger M, Osmani O, Medvedev N, Rethfeld B, Kluth P 2013 Phys. Rev. Lett. 110 245502
[30] Xiao Q, Huang L, Shi Y 2013 J. Appl. Phys. 113 083514
[31] Avchaciov K A, Ritter Y, Djurabekova F, Nordlund K, Albe K 2013 Appl. Phys. Lett. 102 181910
[32] Raghavan R, Boopathy K, Ghisleni R, Pouchon M A, Ramamurty U, Michler J 2010 Scripta Mater. 62 462
[33] Liu Y H, Zhao F, Li Y L, Chen M W 2012 J. Appl. Phys. 112 063504
[34] Raghavan R, Kombaiah B, Döbeli M, Erni R, Ramamurty U, Michler J 2012 Mater. Sci. Eng. A 532 407
[35] Magagnosc D J, Ehrbar R, Kumar G, He M R, Schroers J, Gianola D S 2013 Sci. Rep. 3 1096
[36] Magagnosc D J, Kumar G, Schroers J, Felfer P, Cairney J M, Gianola D S 2014 Acta Mater. 74 165
[37] Jang D, Greer J R 2010 Nat. Mater. 9 215
[38] Liontas R, Gu X W, Fu E, Wang Y, Li N, Mara N, Greer J R 2014 Nano Lett. 14 5176
[39] Jia H L, Muntele C I, Huang L, Li X, Li G, Zhang T, He W, Liaw P K 2013 Intermetallics 41 35
[40] Jiang Q K, Qin C L, Amiya K, Nagata S, Inoue A, Zheng R T, Cheng G A, Nie X P, Jiang J Z 2008 Intermetallics 16 225
[41] Menendez E, Hynowska A, Fornell J, Surinach S, Montserrat J, Temst K, Vantomme A, Baro M D, Garcia-Lecina E, Pellicer E, Sort J 2014 J. Alloys Compd. 610 118
[42] Okunev V D, Samoilenko Z A, Szewczyk A, Szymczak R, Szymczak H, Lewandowski S J, Aleshkevych P, Więckowski J, Khmelevskaya V S, Antoshina I A 2011 J. Phys. Condens. Matter 23 415702
-
[1] Was G S 2007 Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer)
[2] Williams J C, Starke E A 2003 Acta Mater. 51 5775
[3] Greer A L 1995 Science 267 1947
[4] Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45
[5] Inoue A 2000 Acta Mater. 48 279
[6] Ritchie R O 2011 Nat. Mater. 10 817
[7] Sun B A, Wang W H 2015 Prog. Mater. Sci. 74 211
[8] Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L, Ritchie R O 2011 Nat. Mater. 10 123
[9] Mayr S G 2005 Phys. Rev. B 71 144109
[10] Mayr S G, Averback R S 2001 Phys. Rev. Lett. 87 196106
[11] Mayr S G, Ashkenazy Y, Albe K, Averback R S 2003 Phys. Rev. Lett. 90 055505
[12] Klaumunzer S, Schumacher G, Rentzsch S, Vogl G 1982 Acta Metall. 30 1493
[13] Luo W D, Yang B, Chen G L 2011 Scripta Mater. 64 625
[14] Carter J, Fu E G, Martin M, Xie G Q, Zhang X, Wang Y Q, Wijesundera D, Wang X M, Chu W K, Shao L 2009 Scripta Mater. 61 265
[15] Shao L, Gorman B P, Aitkaliyeva A, Theodore N D, Xie G Q 2012 Appl. Phys. Lett. 101 041901
[16] Carter J, Fu E G, Martin M, Xie G Q, Zhang X, Wang Y Q, Wijesundera D, Wang X M, Chu W K, McDeavitt S M, Shao L 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 2827
[17] Huang Y J, Fan H B, Zhou X Y, Xue P, Ning Z L, Daisenberger D, Sun J F, Shen J 2015 Scripta Mater. 103 41
[18] Bian X L, Wang G, Chen H C, Yan L, Wang J G, Wang Q, Hu P F, Ren J L, Chan K C, Zheng N, Teresiak A, Gao Y L, Zhai Q J, Eckert J, Beadsworth J, Dahmen K A, Liaw P K 2016 Acta Mater. 106 66
[19] Perez-Bergquist A G, Bei H B, Leonard K J, Zhang Y W, Zinkle S J 2014 Intermetallics 53 62
[20] Myers M, Fu E G, Myers M, Wang H, Xie G Q, Wang X, Chu W K, Shao L 2010 Scripta Mater. 63 1045
[21] Myers M, Charnvanichborikarn S, Wei C, Luo Z, Xie G, Kucheyev S, Lucca D, Shao L 2012 Scripta Mater. 67 887
[22] Rizza G, Dunlop A, Jaskierowicz G, Kopcewicz G 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 226 609
[23] Chen H C, Cao G Q, Liu R D, Wang G, Yan L, Zhou X T 2015 J. Appl. Phys. 118 035308
[24] Kawasegia N, Morita N, Yamada N, Takano N, Oyama N, Ashida K, Taniguchi J, MiyamotoI, Momota S, Ofune H 2006 Appl. Phys. Lett. 89 143115
[25] Yang Y Z, Tao P J, Li G Q, Mu Z X, Ru Q, Xie Z W, Chen X C 2009 Intermetallics 17 722
[26] Qin W, Szpunar J A, Umakoshi Y 2011 Acta Mater. 59 2221
[27] Thomas S, Thomas H, Avasthi D K, Tripathi A, Ramanujan R V, Anantharaman M R 2009 J. Appl. Phys. 105 033910
[28] Gutzmann A, Klaumnzer S, Meier P 1995 Phys. Rev. Lett. 74 2256
[29] Ridgway M C, Bierschenk T, Giulian R, Afra B, Rodriguez M D, Araujo L L, Byrne A P, Kirby N, Pakarinen O H, Djurabekova F, Nordlund K, Schleberger M, Osmani O, Medvedev N, Rethfeld B, Kluth P 2013 Phys. Rev. Lett. 110 245502
[30] Xiao Q, Huang L, Shi Y 2013 J. Appl. Phys. 113 083514
[31] Avchaciov K A, Ritter Y, Djurabekova F, Nordlund K, Albe K 2013 Appl. Phys. Lett. 102 181910
[32] Raghavan R, Boopathy K, Ghisleni R, Pouchon M A, Ramamurty U, Michler J 2010 Scripta Mater. 62 462
[33] Liu Y H, Zhao F, Li Y L, Chen M W 2012 J. Appl. Phys. 112 063504
[34] Raghavan R, Kombaiah B, Döbeli M, Erni R, Ramamurty U, Michler J 2012 Mater. Sci. Eng. A 532 407
[35] Magagnosc D J, Ehrbar R, Kumar G, He M R, Schroers J, Gianola D S 2013 Sci. Rep. 3 1096
[36] Magagnosc D J, Kumar G, Schroers J, Felfer P, Cairney J M, Gianola D S 2014 Acta Mater. 74 165
[37] Jang D, Greer J R 2010 Nat. Mater. 9 215
[38] Liontas R, Gu X W, Fu E, Wang Y, Li N, Mara N, Greer J R 2014 Nano Lett. 14 5176
[39] Jia H L, Muntele C I, Huang L, Li X, Li G, Zhang T, He W, Liaw P K 2013 Intermetallics 41 35
[40] Jiang Q K, Qin C L, Amiya K, Nagata S, Inoue A, Zheng R T, Cheng G A, Nie X P, Jiang J Z 2008 Intermetallics 16 225
[41] Menendez E, Hynowska A, Fornell J, Surinach S, Montserrat J, Temst K, Vantomme A, Baro M D, Garcia-Lecina E, Pellicer E, Sort J 2014 J. Alloys Compd. 610 118
[42] Okunev V D, Samoilenko Z A, Szewczyk A, Szymczak R, Szymczak H, Lewandowski S J, Aleshkevych P, Więckowski J, Khmelevskaya V S, Antoshina I A 2011 J. Phys. Condens. Matter 23 415702
计量
- 文章访问数: 8487
- PDF下载量: 507
- 被引次数: 0