搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

六面顶压机立方压腔内压强的定量测量及受力分析

王海阔 任瑛 贺端威 许超

引用本文:
Citation:

六面顶压机立方压腔内压强的定量测量及受力分析

王海阔, 任瑛, 贺端威, 许超

Force analysis and pressure quantitative measurement for the high pressure cubic cell

Wang Hai-Kuo, Ren Ying, He Duan-Wei, Xu Chao
PDF
导出引用
  • 将六面顶压机立方压腔内置入电路,采用原位电阻测量确定Bi,Tl,Ba相变的方法,标定了压腔内不同位置的压力(强).通过标定立方压腔顶锤表面的压力并结合计算,分别得到了外部加载与压腔密封边受力以及合成腔体受力的对应关系.实验分析结果表明,随着外部加载的增加,当腔体压力达到5 GPa时,消耗在压腔密封边上的加载急剧上升,消耗在合成腔体的加载趋于不变,从而导致立方压腔压力达到上限.利用实验结果,分析了立方压腔在高压下的受力状态,解释了立方压腔的压力难以超过7 GPa的原因.结合立方压腔的几何结构,通过理论分析,提出了采用高体弹模量的物质作为传压介质,同时采用低体弹模量的物质作为密封边提高立方压腔压力上限的可行方案.通过定量标定叶腊石压腔轴向的压力梯度,给出了压腔内沿对称轴不同位置压力值的计算方法,此方法可为高压实验提供更精确的压力数据.
    Large volume cubic press is one of the most popular high pressure devices which can produce pressures up to about 7 GPa. It is well known experimentally that the enhancing of the maximum pressure generated in the large volume cubic press has attracted wide attention among scientists and engineers because the higher pressure is capable of synthesizing some materials with interesting properties. In the large volume cubic press, pyrophyllite is typically used as a pressure-transmitting medium. A specimen immersed in such a solid experiences a generalized stress state. The pressure distribution in pyrophyllite is an important parameter for characterizing the sample environment and designing the experiments at high pressure. There is a need for the quantitative measurement of pressure gradients in the pyrophyllite pressure medium, so that the accurate experimental data under high pressure can be obtained. In the large volume cubic apparatus (68 MN), we put a circuit into the high pressure cubic cell, so that the pressures at various positions can be measured by using the phase transitions in Bi, Tl and Ba. In the present work, the relationship between the total press load and the press load allocated to the anvil face, and the relationship between the total press load and the press load allocated to gaskets are established at room temperature. The results show that with the increase of the total press load, the load allocated to the gaskets is increased sharply, while the curve of load allocated to the anvil face versus total press load reaches a plateau, which results in the cell pressure reaching upper limit when the cell pressure reaches up to about 5 GPa. According to the experimental results, the stress state of the cubic cell under high pressure is analyzed and the reason why the pressure generated in the large volume cubic chamber is difficult to exceed 7 GPa is explained. Based on the geometrical structure of the cubic cell, the scheme to increase the upper pressure limit for cubic cell by using the material with high bulk modulus as the pressure transmitting medium and the material with low bulk modulus as the gasket, is proposed. Additionally, the method of calculating the pressure values at different positions along the axis of symmetry in the cubic cell is given through the quantitative calibration of the pressure gradient in the axial direction of the cubic cell. This method can provide more accurate pressure data for high pressure experiments.
      通信作者: 王海阔, haikuo_wang@haut.edu.cn
    • 基金项目: 国家自然科学基金青年基金(批准号:11504087,51502217)、河南省教育厅自然科学项目(批准号:14A430033)和河南工业大学科技创新人才项目(批准号:2014CXRC08)资助的课题.
      Corresponding author: Wang Hai-Kuo, haikuo_wang@haut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation for the Youth Scholars of China (Grant Nos. 11504087, 51502217), the Natural Science Foundation for Education Department of Henan, China (Grant No. 14A430033), and the Fundamental Research Fund for Henan University of Technology, China (Grant No. 2014CXRC08).
    [1]

    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599

    [2]

    Qin J Q, He D W, Wang J H, Fang L M, Lei L, Li Y J, Hu J, Kou Z L, Bi Y 2008 Adv. Mater. 20 4780

    [3]

    Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, Liu Z Y 2013 Nature 493 385

    [4]

    Xu C, He D W, Wang H K, Guan J W, Liu C M, Peng F, Wang W D, Kou Z L, He K, Yan X Z, Bi Y, Liu L, Li F J, Hui B 2013 Int. J. Refract. Met. Hard. Mater. 36 232

    [5]

    Oganov A R, Ono S 2004 Nature 430 445

    [6]

    Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M, Prakapenka V 2009 Nature 458 182

    [7]

    Hemley R J, Soos Z G, Hanfland M, Mao H K 1994 Nature 369 384

    [8]

    Wang H K, He D W, Xu C, Deng J R, He F, Wang Y K, Kou Z L 2013 Acta Phys. Sin. 62 180703 (in Chinese) [王海阔, 贺端威, 许超, 邓佶瑞, 何飞, 王永坤, 寇自力 2013 62 180703]

    [9]

    Wang H K, He D W, Xu C, Guan J W, Wang W D, Kou Z L, Peng F 2013 Chin. J. High Press. Phys. 27 0633 (in Chinese) [王海阔, 贺端威, 许超, 管俊伟, 王文丹, 寇自力, 彭放 2013 高压 27 0633]

    [10]

    Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, Abakumov A M 2012 Nat. Commun. 3 1163

    [11]

    Jayaraman A 1986 Rev. Sci. Instrum. 57 1013

    [12]

    Andrault D, Fiquet G 2001 Rev. Sci. Instrum. 72 1283

    [13]

    Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G, Wilson R M 1995 Appl. Phys. Lett. 66 1735

    [14]

    Fan D W, Wei S Y, Xie H S 2013 Chin. Phys. B 22 010702

    [15]

    Liebermann Robert C, Wang Y B 1992 High-Pressure Research: Application to Earth and Planetary Sciences (Washington DC: AGU) p19

    [16]

    Tange Y, Irifune T, Funakoshi K 2008 High Press. Res. 28 245

    [17]

    Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 02190

    [18]

    Sung C M 1997 High Temp. High Press. 29 253

    [19]

    He D W, Wang H K, Tan N, Wang W D, Kou Z L, Peng F 2010 Chinese Patent ZL 201010142804.7 (in Chinese) [贺端威, 王海阔, 谭宁, 王文丹, 寇自力, 彭放 2010 中国专利 ZL 201010142804.7]

    [20]

    Wang H K, He D W 2011 Chinese Patent ZL 201110091480.3 (in Chinese) [王海阔, 贺端威 2011 中国专利ZL 201110091480.3]

    [21]

    Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701

    [22]

    Yu G, Han Q G, Li M Z, Jia X P, Ma H A, Li Y F 2012 Acta Phys. Sin. 61 040702 (in Chinese) [于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬 2012 61 040702]

    [23]

    Khvostantsev L G 1984 High Temp. High Press. 16 165

    [24]

    Wang H K, He D W, Tan N, Wang W D, Wang J H, Dong H N, Ma H, Kou Z L, Peng F, Liu X, Li S C 2010 Rev. Sci. Instrum 81 116101

    [25]

    Wang H K, He D W, Yan X Z, Xu C, Guan J W, Tan N, Wang W D 2011 High Press. Res. 31 581

    [26]

    Wang H K, He D W 2012 High Press. Res. 32 186

    [27]

    Fang L M, He D W, Chen C, Ding L Y, Luo X J 2007 High Press. Res. 27 367

    [28]

    Han Q G, Ma H A, Zhou L, Zhang C, Tian Y, Jia X P 2007 Rev. Sci. Instrum. 78 113906

    [29]

    Andersson G, Sundqvist B, Backstrom G 1989 J. Appl. Phys. 65 103943

    [30]

    Daniels W B, Jones M T 1961 Rev. Sci. Instrum. 32 885

  • [1]

    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599

    [2]

    Qin J Q, He D W, Wang J H, Fang L M, Lei L, Li Y J, Hu J, Kou Z L, Bi Y 2008 Adv. Mater. 20 4780

    [3]

    Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, Liu Z Y 2013 Nature 493 385

    [4]

    Xu C, He D W, Wang H K, Guan J W, Liu C M, Peng F, Wang W D, Kou Z L, He K, Yan X Z, Bi Y, Liu L, Li F J, Hui B 2013 Int. J. Refract. Met. Hard. Mater. 36 232

    [5]

    Oganov A R, Ono S 2004 Nature 430 445

    [6]

    Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M, Prakapenka V 2009 Nature 458 182

    [7]

    Hemley R J, Soos Z G, Hanfland M, Mao H K 1994 Nature 369 384

    [8]

    Wang H K, He D W, Xu C, Deng J R, He F, Wang Y K, Kou Z L 2013 Acta Phys. Sin. 62 180703 (in Chinese) [王海阔, 贺端威, 许超, 邓佶瑞, 何飞, 王永坤, 寇自力 2013 62 180703]

    [9]

    Wang H K, He D W, Xu C, Guan J W, Wang W D, Kou Z L, Peng F 2013 Chin. J. High Press. Phys. 27 0633 (in Chinese) [王海阔, 贺端威, 许超, 管俊伟, 王文丹, 寇自力, 彭放 2013 高压 27 0633]

    [10]

    Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, Abakumov A M 2012 Nat. Commun. 3 1163

    [11]

    Jayaraman A 1986 Rev. Sci. Instrum. 57 1013

    [12]

    Andrault D, Fiquet G 2001 Rev. Sci. Instrum. 72 1283

    [13]

    Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G, Wilson R M 1995 Appl. Phys. Lett. 66 1735

    [14]

    Fan D W, Wei S Y, Xie H S 2013 Chin. Phys. B 22 010702

    [15]

    Liebermann Robert C, Wang Y B 1992 High-Pressure Research: Application to Earth and Planetary Sciences (Washington DC: AGU) p19

    [16]

    Tange Y, Irifune T, Funakoshi K 2008 High Press. Res. 28 245

    [17]

    Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 02190

    [18]

    Sung C M 1997 High Temp. High Press. 29 253

    [19]

    He D W, Wang H K, Tan N, Wang W D, Kou Z L, Peng F 2010 Chinese Patent ZL 201010142804.7 (in Chinese) [贺端威, 王海阔, 谭宁, 王文丹, 寇自力, 彭放 2010 中国专利 ZL 201010142804.7]

    [20]

    Wang H K, He D W 2011 Chinese Patent ZL 201110091480.3 (in Chinese) [王海阔, 贺端威 2011 中国专利ZL 201110091480.3]

    [21]

    Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701

    [22]

    Yu G, Han Q G, Li M Z, Jia X P, Ma H A, Li Y F 2012 Acta Phys. Sin. 61 040702 (in Chinese) [于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬 2012 61 040702]

    [23]

    Khvostantsev L G 1984 High Temp. High Press. 16 165

    [24]

    Wang H K, He D W, Tan N, Wang W D, Wang J H, Dong H N, Ma H, Kou Z L, Peng F, Liu X, Li S C 2010 Rev. Sci. Instrum 81 116101

    [25]

    Wang H K, He D W, Yan X Z, Xu C, Guan J W, Tan N, Wang W D 2011 High Press. Res. 31 581

    [26]

    Wang H K, He D W 2012 High Press. Res. 32 186

    [27]

    Fang L M, He D W, Chen C, Ding L Y, Luo X J 2007 High Press. Res. 27 367

    [28]

    Han Q G, Ma H A, Zhou L, Zhang C, Tian Y, Jia X P 2007 Rev. Sci. Instrum. 78 113906

    [29]

    Andersson G, Sundqvist B, Backstrom G 1989 J. Appl. Phys. 65 103943

    [30]

    Daniels W B, Jones M T 1961 Rev. Sci. Instrum. 32 885

  • [1] 田毅, 杜明浩, 张佳威, 贺端威. 立方大腔体静高压装置中叶腊石的传压及密封性能研究.  , 2024, 73(1): 019101. doi: 10.7498/aps.73.20231087
    [2] 何霄, 肖小舟, 何滨, 薛平, 肖嘉莹. 基于光声泵浦成像的氧分压测量定量分析.  , 2023, 72(21): 218101. doi: 10.7498/aps.72.20231041
    [3] 段俊, 唐科, 秦敏, 王丹, 王牧笛, 方武, 孟凡昊, 谢品华, 刘建国, 刘文清. 宽带腔增强吸收光谱技术应用于大气NO3自由基的测量.  , 2021, 70(1): 010702. doi: 10.7498/aps.70.20201066
    [4] 戴逸, 王文丹, 法志湘, 王路, 王菊, 梁策, 李星翰. 八面腔压机中一定尺寸的二级压砧上运行的最大组装.  , 2021, 70(14): 144702. doi: 10.7498/aps.70.20210006
    [5] 张鹤露, 秦敏, 方武, 唐科, 段俊, 孟凡昊, 邵豆, 华卉, 廖知堂, 谢品华. 基于非相干宽带腔增强吸收光谱技术对碘氧自由基的定量研究.  , 2021, 70(15): 150702. doi: 10.7498/aps.70.20210312
    [6] 张步强, 许振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰. 基于波长调制技术的高温高压流场温度测量方法.  , 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [7] 张云刚, 刘如慧, 汪梅婷, 王允轩, 李占勋, 童凯. 漫反射立方腔单次反射平均光程的理论和实验研究.  , 2018, 67(1): 016102. doi: 10.7498/aps.67.20171808
    [8] 段俊, 秦敏, 方武, 凌六一, 胡仁志, 卢雪, 沈兰兰, 王丹, 谢品华, 刘建国, 刘文清. 非相干宽带腔增强吸收光谱技术应用于实际大气亚硝酸的测量.  , 2015, 64(18): 180701. doi: 10.7498/aps.64.180701
    [9] 蒋建军, 李和平, 代立东, 胡海英, 赵超帅. 基于拉曼频移的白宝石压腔无压标系统高温高压实验标定.  , 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [10] 谭巍, 付小芳, 李志新, 赵刚, 闫晓娟, 马维光, 董磊, 张雷, 尹王保, 贾锁堂. 基于单波长外腔共振和频技术产生波长可调谐589 nm激光及钠原子饱和荧光谱的测量.  , 2013, 62(9): 094211. doi: 10.7498/aps.62.094211
    [11] 王海阔, 贺端威, 许超, 刘方明, 邓佶睿, 何飞, 王永坤, 寇自力. 复合型多晶金刚石末级压砧的制备并标定六面顶压机6-8型压腔压力至35GPa.  , 2013, 62(18): 180703. doi: 10.7498/aps.62.180703
    [12] 董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊. 宽带腔增强吸收光谱技术应用于痕量气体探测及气溶胶消光系数测量.  , 2012, 61(6): 060702. doi: 10.7498/aps.61.060702
    [13] 管俊伟, 贺端威, 王海阔, 彭放, 许超, 王文丹, 王凯雪, 贺凯. 力学结构及末级压砧硬度对八面体压腔高压发生效率的影响.  , 2012, 61(10): 100701. doi: 10.7498/aps.61.100701
    [14] 李三伟, 宋天明, 易荣清, 崔延莉, 蒋小华, 王哲斌, 杨家敏, 江少恩. 神光Ⅱ激光装置黑腔辐射温度定量研究.  , 2011, 60(5): 055207. doi: 10.7498/aps.60.055207
    [15] 王峰, 彭晓世, 刘慎业, 李永升, 蒋小华, 丁永坤. 超高压下冲击波速度直接测量技术.  , 2011, 60(2): 025202. doi: 10.7498/aps.60.025202
    [16] 向少华, 宋克慧. 用腔场QED技术实现量子信息转移.  , 2005, 54(3): 1190-1193. doi: 10.7498/aps.54.1190
    [17] 张杰, 雒建林, 白海洋, 陈兆甲, 林德华, 车广灿, 任治安, 赵忠贤, 金铎. 常压和高压合成MgB2的低温比热及两个超导能隙研究.  , 2002, 51(2): 342-346. doi: 10.7498/aps.51.342
    [18] 杨家敏, 丁耀南, 易荣清, 王耀梅, 张文海, 郑志坚. 软X射线能谱定量测量技术研究.  , 2001, 50(9): 1723-1728. doi: 10.7498/aps.50.1723
    [19] 胡静竹, 唐汝明, 徐济安. 金刚石压砧高压装置及I2和S高压相变的观察.  , 1980, 29(10): 1351-1354. doi: 10.7498/aps.29.1351
    [20] 李家璘, 陈良辰, 沈主同. 双级四压砧(四面体)静态超高压技术.  , 1975, 24(4): 301-306. doi: 10.7498/aps.24.301
计量
  • 文章访问数:  6718
  • PDF下载量:  321
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-31
  • 修回日期:  2017-02-04
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map