-
将六面顶压机立方压腔内置入电路,采用原位电阻测量确定Bi,Tl,Ba相变的方法,标定了压腔内不同位置的压力(强).通过标定立方压腔顶锤表面的压力并结合计算,分别得到了外部加载与压腔密封边受力以及合成腔体受力的对应关系.实验分析结果表明,随着外部加载的增加,当腔体压力达到5 GPa时,消耗在压腔密封边上的加载急剧上升,消耗在合成腔体的加载趋于不变,从而导致立方压腔压力达到上限.利用实验结果,分析了立方压腔在高压下的受力状态,解释了立方压腔的压力难以超过7 GPa的原因.结合立方压腔的几何结构,通过理论分析,提出了采用高体弹模量的物质作为传压介质,同时采用低体弹模量的物质作为密封边提高立方压腔压力上限的可行方案.通过定量标定叶腊石压腔轴向的压力梯度,给出了压腔内沿对称轴不同位置压力值的计算方法,此方法可为高压实验提供更精确的压力数据.Large volume cubic press is one of the most popular high pressure devices which can produce pressures up to about 7 GPa. It is well known experimentally that the enhancing of the maximum pressure generated in the large volume cubic press has attracted wide attention among scientists and engineers because the higher pressure is capable of synthesizing some materials with interesting properties. In the large volume cubic press, pyrophyllite is typically used as a pressure-transmitting medium. A specimen immersed in such a solid experiences a generalized stress state. The pressure distribution in pyrophyllite is an important parameter for characterizing the sample environment and designing the experiments at high pressure. There is a need for the quantitative measurement of pressure gradients in the pyrophyllite pressure medium, so that the accurate experimental data under high pressure can be obtained. In the large volume cubic apparatus (68 MN), we put a circuit into the high pressure cubic cell, so that the pressures at various positions can be measured by using the phase transitions in Bi, Tl and Ba. In the present work, the relationship between the total press load and the press load allocated to the anvil face, and the relationship between the total press load and the press load allocated to gaskets are established at room temperature. The results show that with the increase of the total press load, the load allocated to the gaskets is increased sharply, while the curve of load allocated to the anvil face versus total press load reaches a plateau, which results in the cell pressure reaching upper limit when the cell pressure reaches up to about 5 GPa. According to the experimental results, the stress state of the cubic cell under high pressure is analyzed and the reason why the pressure generated in the large volume cubic chamber is difficult to exceed 7 GPa is explained. Based on the geometrical structure of the cubic cell, the scheme to increase the upper pressure limit for cubic cell by using the material with high bulk modulus as the pressure transmitting medium and the material with low bulk modulus as the gasket, is proposed. Additionally, the method of calculating the pressure values at different positions along the axis of symmetry in the cubic cell is given through the quantitative calibration of the pressure gradient in the axial direction of the cubic cell. This method can provide more accurate pressure data for high pressure experiments.
-
Keywords:
- high pressure technology /
- cubic cell /
- force analysis of the high pressure cell /
- pressure quantitative measurement
[1] Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599
[2] Qin J Q, He D W, Wang J H, Fang L M, Lei L, Li Y J, Hu J, Kou Z L, Bi Y 2008 Adv. Mater. 20 4780
[3] Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, Liu Z Y 2013 Nature 493 385
[4] Xu C, He D W, Wang H K, Guan J W, Liu C M, Peng F, Wang W D, Kou Z L, He K, Yan X Z, Bi Y, Liu L, Li F J, Hui B 2013 Int. J. Refract. Met. Hard. Mater. 36 232
[5] Oganov A R, Ono S 2004 Nature 430 445
[6] Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M, Prakapenka V 2009 Nature 458 182
[7] Hemley R J, Soos Z G, Hanfland M, Mao H K 1994 Nature 369 384
[8] Wang H K, He D W, Xu C, Deng J R, He F, Wang Y K, Kou Z L 2013 Acta Phys. Sin. 62 180703 (in Chinese) [王海阔, 贺端威, 许超, 邓佶瑞, 何飞, 王永坤, 寇自力 2013 62 180703]
[9] Wang H K, He D W, Xu C, Guan J W, Wang W D, Kou Z L, Peng F 2013 Chin. J. High Press. Phys. 27 0633 (in Chinese) [王海阔, 贺端威, 许超, 管俊伟, 王文丹, 寇自力, 彭放 2013 高压 27 0633]
[10] Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, Abakumov A M 2012 Nat. Commun. 3 1163
[11] Jayaraman A 1986 Rev. Sci. Instrum. 57 1013
[12] Andrault D, Fiquet G 2001 Rev. Sci. Instrum. 72 1283
[13] Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G, Wilson R M 1995 Appl. Phys. Lett. 66 1735
[14] Fan D W, Wei S Y, Xie H S 2013 Chin. Phys. B 22 010702
[15] Liebermann Robert C, Wang Y B 1992 High-Pressure Research: Application to Earth and Planetary Sciences (Washington DC: AGU) p19
[16] Tange Y, Irifune T, Funakoshi K 2008 High Press. Res. 28 245
[17] Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 02190
[18] Sung C M 1997 High Temp. High Press. 29 253
[19] He D W, Wang H K, Tan N, Wang W D, Kou Z L, Peng F 2010 Chinese Patent ZL 201010142804.7 (in Chinese) [贺端威, 王海阔, 谭宁, 王文丹, 寇自力, 彭放 2010 中国专利 ZL 201010142804.7]
[20] Wang H K, He D W 2011 Chinese Patent ZL 201110091480.3 (in Chinese) [王海阔, 贺端威 2011 中国专利ZL 201110091480.3]
[21] Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701
[22] Yu G, Han Q G, Li M Z, Jia X P, Ma H A, Li Y F 2012 Acta Phys. Sin. 61 040702 (in Chinese) [于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬 2012 61 040702]
[23] Khvostantsev L G 1984 High Temp. High Press. 16 165
[24] Wang H K, He D W, Tan N, Wang W D, Wang J H, Dong H N, Ma H, Kou Z L, Peng F, Liu X, Li S C 2010 Rev. Sci. Instrum 81 116101
[25] Wang H K, He D W, Yan X Z, Xu C, Guan J W, Tan N, Wang W D 2011 High Press. Res. 31 581
[26] Wang H K, He D W 2012 High Press. Res. 32 186
[27] Fang L M, He D W, Chen C, Ding L Y, Luo X J 2007 High Press. Res. 27 367
[28] Han Q G, Ma H A, Zhou L, Zhang C, Tian Y, Jia X P 2007 Rev. Sci. Instrum. 78 113906
[29] Andersson G, Sundqvist B, Backstrom G 1989 J. Appl. Phys. 65 103943
[30] Daniels W B, Jones M T 1961 Rev. Sci. Instrum. 32 885
-
[1] Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599
[2] Qin J Q, He D W, Wang J H, Fang L M, Lei L, Li Y J, Hu J, Kou Z L, Bi Y 2008 Adv. Mater. 20 4780
[3] Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, Liu Z Y 2013 Nature 493 385
[4] Xu C, He D W, Wang H K, Guan J W, Liu C M, Peng F, Wang W D, Kou Z L, He K, Yan X Z, Bi Y, Liu L, Li F J, Hui B 2013 Int. J. Refract. Met. Hard. Mater. 36 232
[5] Oganov A R, Ono S 2004 Nature 430 445
[6] Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M, Prakapenka V 2009 Nature 458 182
[7] Hemley R J, Soos Z G, Hanfland M, Mao H K 1994 Nature 369 384
[8] Wang H K, He D W, Xu C, Deng J R, He F, Wang Y K, Kou Z L 2013 Acta Phys. Sin. 62 180703 (in Chinese) [王海阔, 贺端威, 许超, 邓佶瑞, 何飞, 王永坤, 寇自力 2013 62 180703]
[9] Wang H K, He D W, Xu C, Guan J W, Wang W D, Kou Z L, Peng F 2013 Chin. J. High Press. Phys. 27 0633 (in Chinese) [王海阔, 贺端威, 许超, 管俊伟, 王文丹, 寇自力, 彭放 2013 高压 27 0633]
[10] Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, Abakumov A M 2012 Nat. Commun. 3 1163
[11] Jayaraman A 1986 Rev. Sci. Instrum. 57 1013
[12] Andrault D, Fiquet G 2001 Rev. Sci. Instrum. 72 1283
[13] Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G, Wilson R M 1995 Appl. Phys. Lett. 66 1735
[14] Fan D W, Wei S Y, Xie H S 2013 Chin. Phys. B 22 010702
[15] Liebermann Robert C, Wang Y B 1992 High-Pressure Research: Application to Earth and Planetary Sciences (Washington DC: AGU) p19
[16] Tange Y, Irifune T, Funakoshi K 2008 High Press. Res. 28 245
[17] Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 02190
[18] Sung C M 1997 High Temp. High Press. 29 253
[19] He D W, Wang H K, Tan N, Wang W D, Kou Z L, Peng F 2010 Chinese Patent ZL 201010142804.7 (in Chinese) [贺端威, 王海阔, 谭宁, 王文丹, 寇自力, 彭放 2010 中国专利 ZL 201010142804.7]
[20] Wang H K, He D W 2011 Chinese Patent ZL 201110091480.3 (in Chinese) [王海阔, 贺端威 2011 中国专利ZL 201110091480.3]
[21] Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701
[22] Yu G, Han Q G, Li M Z, Jia X P, Ma H A, Li Y F 2012 Acta Phys. Sin. 61 040702 (in Chinese) [于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬 2012 61 040702]
[23] Khvostantsev L G 1984 High Temp. High Press. 16 165
[24] Wang H K, He D W, Tan N, Wang W D, Wang J H, Dong H N, Ma H, Kou Z L, Peng F, Liu X, Li S C 2010 Rev. Sci. Instrum 81 116101
[25] Wang H K, He D W, Yan X Z, Xu C, Guan J W, Tan N, Wang W D 2011 High Press. Res. 31 581
[26] Wang H K, He D W 2012 High Press. Res. 32 186
[27] Fang L M, He D W, Chen C, Ding L Y, Luo X J 2007 High Press. Res. 27 367
[28] Han Q G, Ma H A, Zhou L, Zhang C, Tian Y, Jia X P 2007 Rev. Sci. Instrum. 78 113906
[29] Andersson G, Sundqvist B, Backstrom G 1989 J. Appl. Phys. 65 103943
[30] Daniels W B, Jones M T 1961 Rev. Sci. Instrum. 32 885
计量
- 文章访问数: 6718
- PDF下载量: 321
- 被引次数: 0