-
基于生化分子检测技术高灵敏度、小型化的需求,近些年国内外相继提出一种用光纤表面增强拉曼散射(SERS)探针进行拉曼信号检测的方法,此检测方法不仅能实现远端检测和原位检测功能,而且具有很高的灵敏度.本文通过简单的管式腐蚀法制成一种锥柱组合型光纤探针,并通过静电引力将银纳米颗粒结合到硅烷化的二氧化硅光纤探针表面.用罗丹明6G(R6G)溶液的检测极限来表征该光纤探针的活性和灵敏度,通过优化银纳米颗粒的自组装时间为30 min,光纤探针直径为62 m,制备出高灵敏度的光纤SERS探针,远端检测R6G的检测极限可达到10-14 mol/L.因此,该光纤SERS探针在分子检测方面有巨大的应用前景.Owing to increasingly severe environmental pollution, food safety and other problems, higher and higher requirements for the detecting technique of poisonous and harmful biochemical molecules have been put forward. The conventional biochemical detector has the disadvantages of large size, high cost and inability to realize far-end and in-situ detection functions. Based on the requirements of the biochemical molecular detection technology for high sensitivity, miniaturization, far-end detection, insitu detection, real-time analysis and the like, a detection method using a fiber surface-enhanced Raman scattering (SERS) probe to carry out Raman signal detection has been put forward in recent years. The detection method not only realizes far-end and insitu detection functions, but also has a relatively high sensitivity. In this paper, a taper and cylinder combination type fiber probe is made by adopting a simple tube corrosion method, Under the situation of fixed temperature, cone-cylinder combined fiber probes with different diameters are obtained by controlling the corrosion time, and silver nanoparticles are bound to the surface of a silanized silicon dioxide fiber probe through electrostatic forces. Then, the sizes and morphologies of silver nanoparticles on the surface of the fiber probe are observed under a scanning electron microscope. Besides, the detection limit of a rhodamine 6G (R6G) solution is used to manifest both the activity and the sensitivity of the fiber probe, and the self-assembly time of the silver nanoparticles are further optimized to be 30 min and the diameter of the fiber probe to be 62 upm. When the concentration of a silver sol solution is constant, a high-sensitivity fiber SERS probe can be prepared. Through far-end detection, the detection limit of the R6G can reach 10-14 mol/L, and the enhancement factor is 1.36104. This work can serve as an experimental basis for a novel fiber surface-enhanced Raman scattering sensor in such aspects as high sensitivity and low cost. The studies of this paper are expected to provide an appropriate detection technique for rapid quantitative detection of biochemical molecules, and further provide a reference for various application fields of environmental monitoring and food safety analysis in future in terms of realizing rapid and accurate in-situ detection. Therefore, the fiber SERS probe has large application foreground in molecular detection.
-
Keywords:
- fiber probe /
- surface enhanced Raman scattering /
- sensitivity
[1] Nie S, Emory S R 1997 Science 275 1102
[2] Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese)[黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 58 1980]
[3] Li X L, Zhang Z D, Wang H Y, Xiong Z H, Zhang Z Y 2011 Acta Phys. Sin. 60 047807 (in Chinese)[李雪莲, 张志东, 王红艳, 熊祖洪, 张中月 2011 60 047807]
[4] Cao J, Zhao D, Lei X, Liu Y, Mao Q H 2014 Appl. Phys. Lett. 104 201906
[5] Huang Q, Zhang X D, Ji W W, Wang J, Ni J, Li L N, Sun J, Geng W D, Geng X H, Xiong S Z, Zhao Y 2010 Acta Phys. Sin. 59 2753 (in Chinese)[黄茜, 张晓丹, 纪伟伟, 王京, 倪牮, 李林娜, 孙建, 耿卫东, 耿新华, 熊绍珍, 赵颖 2010 59 2753]
[6] Zhang Y, Gua C, Schwartzberg A M, Zhang J Z 2005 Appl. Phys. Lett. 87 123105
[7] Shi C, Yan H, Gu C, Ghosh D, Seballos L, Chen S W, Zhang J Z, Chen B 2008 Appl. Phys. Lett. 92 103107
[8] Liu Y, Huang Z L, Zhou F, Lei X, Yao B, Meng G W, Mao Q H 2016 Nanoscale 8 10607
[9] Stokes D L, Vo-Dinh T 2000 Sensor. Actuat. B:Chem. 69 28
[10] Polwart E, Keir R L, Davidson C M, Smith W E, Sadler D A 2000 Appl. Spectrosc. 54 522
[11] Yap F L, Thoniyot P, Krishnan S, Krishnamoorthy S 2012 ACS Nano 6 2056
[12] Viets C, Hill W 1998 Sensor. Actuat. B:Chem. 51 92
[13] Ma X D, Huo H B, Wang W H, Tian Ye, Wu N, Guthy C, Shen M Y, Wang X W 2009 Sensors 10 11064
[14] Jayawardhana S, Kostovski G, Mazzolini A P, Stoddart P R 2011 Appl. Opt. 50 155
[15] Zheng X L, Guo D W, Shao Y L, Jia S J, Xu S P, Zhao B, Xu W Q 2008 Langmuir 24 4394
[16] Li M S, Yang C X 2010 Chin. Phys. Lett. 27 114
[17] Viets C, Hill W 2001 J. Mol. Struct. 563 163
[18] Fan Q F, Cao J, Liu Y, Yao B, Mao Q H 2013 Appl. Opt. 52 6163
[19] Pesapane A, Lucotti A, Zerbi G 2009 J. Raman Spectrosc. 41 256
[20] Foti A, Andrea C D, Bonaccorso F, Lanza M, Calogero G, Messina E, Marag O M, Fazio B 2013 Plasmonics 8 13
[21] Lucotti A, Zerbi G 2007 Sensor. Actuat. B:Chem. 121 356
[22] Yin Z, Geng Y F, Xie Q L, Hong X M, Tan X L, Chen Y Z, Wang L L, Wang W J, Li X J 2016 Appl. Opt. 55 5408
[23] Zheng X L, Guo D W, Shao Y L, Jia S J, Xu S P, Zhao B, Xu W Q 2008 Langmuir 24 4394
[24] Cao J, Zhao D, Mao Q H 2015 RSC Adv. 5 99491
[25] Lee P C, Meisel D 1982 J. Phys. Chem. 17 3391
[26] Hildebrandt P, Stockburger M 1984 J. Phys. Chem. Lett. 88 5935
[27] Liu T, Zhou L, Zhang Z H, Xiao X S, Zhou M J, Yang C X 2014 Appl. Phys. B:Lasers O. 116 799
[28] Huang Z L, Lei X, Liu Y, Wang Z W, Wang X J, Wang Z M, Mao Q H, Meng G W 2015 ACS Appl. Mater. Inter. 7 17247
[29] Xie Z G, Tao J, Lu Y H, Lin K Q, Yan J, Wang P, Ming H 2009 Opt. Commun. 282 439
[30] Etchegoin P G, Ru E C L 2008 Phys. Chem. Chem. Phys. 10 6079
[31] Shim S, Stuart C M, Mathies R A 2008 ChemPhysChem 9 697
-
[1] Nie S, Emory S R 1997 Science 275 1102
[2] Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese)[黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 58 1980]
[3] Li X L, Zhang Z D, Wang H Y, Xiong Z H, Zhang Z Y 2011 Acta Phys. Sin. 60 047807 (in Chinese)[李雪莲, 张志东, 王红艳, 熊祖洪, 张中月 2011 60 047807]
[4] Cao J, Zhao D, Lei X, Liu Y, Mao Q H 2014 Appl. Phys. Lett. 104 201906
[5] Huang Q, Zhang X D, Ji W W, Wang J, Ni J, Li L N, Sun J, Geng W D, Geng X H, Xiong S Z, Zhao Y 2010 Acta Phys. Sin. 59 2753 (in Chinese)[黄茜, 张晓丹, 纪伟伟, 王京, 倪牮, 李林娜, 孙建, 耿卫东, 耿新华, 熊绍珍, 赵颖 2010 59 2753]
[6] Zhang Y, Gua C, Schwartzberg A M, Zhang J Z 2005 Appl. Phys. Lett. 87 123105
[7] Shi C, Yan H, Gu C, Ghosh D, Seballos L, Chen S W, Zhang J Z, Chen B 2008 Appl. Phys. Lett. 92 103107
[8] Liu Y, Huang Z L, Zhou F, Lei X, Yao B, Meng G W, Mao Q H 2016 Nanoscale 8 10607
[9] Stokes D L, Vo-Dinh T 2000 Sensor. Actuat. B:Chem. 69 28
[10] Polwart E, Keir R L, Davidson C M, Smith W E, Sadler D A 2000 Appl. Spectrosc. 54 522
[11] Yap F L, Thoniyot P, Krishnan S, Krishnamoorthy S 2012 ACS Nano 6 2056
[12] Viets C, Hill W 1998 Sensor. Actuat. B:Chem. 51 92
[13] Ma X D, Huo H B, Wang W H, Tian Ye, Wu N, Guthy C, Shen M Y, Wang X W 2009 Sensors 10 11064
[14] Jayawardhana S, Kostovski G, Mazzolini A P, Stoddart P R 2011 Appl. Opt. 50 155
[15] Zheng X L, Guo D W, Shao Y L, Jia S J, Xu S P, Zhao B, Xu W Q 2008 Langmuir 24 4394
[16] Li M S, Yang C X 2010 Chin. Phys. Lett. 27 114
[17] Viets C, Hill W 2001 J. Mol. Struct. 563 163
[18] Fan Q F, Cao J, Liu Y, Yao B, Mao Q H 2013 Appl. Opt. 52 6163
[19] Pesapane A, Lucotti A, Zerbi G 2009 J. Raman Spectrosc. 41 256
[20] Foti A, Andrea C D, Bonaccorso F, Lanza M, Calogero G, Messina E, Marag O M, Fazio B 2013 Plasmonics 8 13
[21] Lucotti A, Zerbi G 2007 Sensor. Actuat. B:Chem. 121 356
[22] Yin Z, Geng Y F, Xie Q L, Hong X M, Tan X L, Chen Y Z, Wang L L, Wang W J, Li X J 2016 Appl. Opt. 55 5408
[23] Zheng X L, Guo D W, Shao Y L, Jia S J, Xu S P, Zhao B, Xu W Q 2008 Langmuir 24 4394
[24] Cao J, Zhao D, Mao Q H 2015 RSC Adv. 5 99491
[25] Lee P C, Meisel D 1982 J. Phys. Chem. 17 3391
[26] Hildebrandt P, Stockburger M 1984 J. Phys. Chem. Lett. 88 5935
[27] Liu T, Zhou L, Zhang Z H, Xiao X S, Zhou M J, Yang C X 2014 Appl. Phys. B:Lasers O. 116 799
[28] Huang Z L, Lei X, Liu Y, Wang Z W, Wang X J, Wang Z M, Mao Q H, Meng G W 2015 ACS Appl. Mater. Inter. 7 17247
[29] Xie Z G, Tao J, Lu Y H, Lin K Q, Yan J, Wang P, Ming H 2009 Opt. Commun. 282 439
[30] Etchegoin P G, Ru E C L 2008 Phys. Chem. Chem. Phys. 10 6079
[31] Shim S, Stuart C M, Mathies R A 2008 ChemPhysChem 9 697
计量
- 文章访问数: 6526
- PDF下载量: 244
- 被引次数: 0