搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压调控的磁性量子临界点和非常规超导电性

程金光

引用本文:
Citation:

高压调控的磁性量子临界点和非常规超导电性

程金光

Pressure-tuned magnetic quantum critical point and unconventional superconductivity

Cheng Jin-Guang
PDF
导出引用
  • 通过化学掺杂或者施加高压等调控手段抑制长程磁有序可以实现磁性量子临界点,在其附近往往伴随出现诸如非费米液体行为或者非常规超导电性等奇特物理现象.相比于化学掺杂,高压调控具有不引入晶格无序和精细调控等优点.利用能提供良好静水压环境的立方六面砧和活塞-圆筒高压低温测量装置,首先系统研究了具有双螺旋磁有序结构的CrAs和MnP单晶的高压电输运行为,分别在Pc0.8 GPa和8 GPa实现了它们的磁性量子临界点,并在Pc附近分别观察到Tc=2 K和1 K的超导电性,相继实现了铬基和锰基化合物超导体零的突破;然后,详细测量了FeSe单晶高压下的电阻率和交流磁化率,绘制了详尽的温度-压力相图,揭示了电子向列序、长程反铁磁序和超导相之间的相互竞争关系,特别是在接近磁有序消失的临界点Pc6 GPa附近观察到Tcmax=38.5 K的高温超导电性,表明临界反铁磁涨落对FeSe中的高温超导电性起重要作用.
    Magnetic quantum critical point (QCP) arises when a long-range magnetic order occurring at finite temperature can be suppressed to absolute zero temperature by using chemical substitutions or exerting high pressure. Exotic phenomena such as the non-Fermi-liquid behaviors or the unconventional superconductivity are frequently observed near the magnetic QCP. In comparison with chemical substitutions, the application of high pressure has some advantages in the sense that it introduces no chemical disorder and can approach the QCP in a very precise manner. In this article, our recent progress in exploring the unconventional superconductors in the vicinity of pressure-induced magnetic QCP is reviewed. By utilizing the piston-cylinder and cubic-anvil-cell apparatus that can maintain a relatively good hydrostatic pressure condition, we first investigated systematically the effect of pressure on the electrical transport properties of the helimagnetic CrAs and MnP. We discovered for the first time the emergence of superconductivity below Tc=2 K and 1 K near their pressure-induced magnetic QCPs at Pc0.8 GPa and 8 GPa for CrAs and MnP, respectively. They represent the first superconductor among the Cr- and Mn-based compounds, and thus open a new avenue to searching novel superconductors in the Cr- and Mn-based systems. Then, we constructed the most comprehensive temperature-pressure phase diagram of FeSe single crystal based on detailed measurements of high-pressure resistivity and alternating current magnetic susceptibility. We uncovered a dome-shaped magnetic phase superseding the nematic order, and observed the sudden enhancement of superconductivity with Tcmax=38.5 K accompanied with the suppression of magnetic order. Our results revealed explicitly the competing nature of nematic order, antiferromagnetic order, and superconductivity, and how the high-Tc superconductivity is achieved by suppressing the long-range antiferromagnetic order, suggesting the important role of antiferromagnetic spin fluctuations for the Cooper paring. These aforementioned results demonstrated that high pressure is an effective approach to exploring or investigating the anomalous phenomena of strongly correlated electronic systems by finely tuning the competing electronic orders.
      通信作者: 程金光, jgcheng@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11574377)、国家重点基础研究发展计划(批准号:2014CB921500)和中国科学院先导B项目(批准号:XDB07020100)资助的课题.
      Corresponding author: Cheng Jin-Guang, jgcheng@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574377), the National Basic Research Program of China (Grant No. 2014CB921500), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100).
    [1]

    Coleman P, Schofield A J 2005 Nature 433 226

    [2]

    Sachdev S, Keimer B 2011 Phys. Today 64 29

    [3]

    Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39

    [4]

    Norman M R 2011 Science 332 196

    [5]

    Monthoux P, Pines D, Lonzarich G G 2007 Nature 450 1177

    [6]

    Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186

    [7]

    Lohneysen H V, Rosch A, Vojta M, Wölfle P 2007 Rev. Mod. Phys. 79 1015

    [8]

    Yu W, Aczel A A, Williams T J, Bud'ko S L, Ni N, Canfield P C, Luke G M 2009 Phys. Rev. B 79 020511

    [9]

    Matsubayashi K, Terai T, Zhou J S, Uwatoko Y 2014 Rhys. Rev. B 90 125126

    [10]

    Wang B S, Matsubayashi K, Cheng J G, Terashima T, Kihou K, Ishida S, Lee C H, Iyo A, Eisaki H, Uwatoko Y 2016 Phys. Rev. B 94 020502

    [11]

    Uwatoko Y 2002 Rev. High Pressure Sci. Technol. 12 306

    [12]

    Mori N, Takahashi H, Takeshita N 2004 High Pressure Res. 24 225

    [13]

    Cheng J G, Matsubayashi K, Nagasaki S, Hisada A, Hirayama T, Hedo M, Kagi H, Uwatoko Y 2014 Rev. Sci. Instrum. 85 093907

    [14]

    Mao H K, Bell P M 1981 Rev. Sci. Instrum. 52 615

    [15]

    Rotundu C R, Cuk T, Greene R L, Shen Z X, Hemley R J, Struzhkin V V 2013 Rev. Sci. Instrum. 84 063903

    [16]

    Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y, Luo J L 2014 Nat. Commun. 5 5508

    [17]

    Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L, Uwatoko Y 2015 Phys. Rev. Lett. 114 117001

    [18]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146

    [19]

    Mori N, Takahashi H, Miyane Y 1990 Kotai Butsuri 25 185

    [20]

    Uwatoko Y, Matsubayashi K, Aso N, Nishi M, Fujiwara T, Hedo M, Tabata S, Takagi K, Tado M, Kagi H 2008 Rev. High Pressure Sci. Technol. 18 230

    [21]

    Matsubayashi K, Hisada A, Kawae T, Uwatoko Y 2012 Rev. High Pressure Sci. Technol. 22 206

    [22]

    Boller H, Kallel A 1971 Solid State Commun. 9 1699

    [23]

    Selte K, Kjekshus A, Jamison W E, Andresen A, Engebretsen J E 1971 Acta Chem. Scand. 25 1703

    [24]

    Watanabe H, Kazama N, Yamaguichi Y, Ohashi M 1969 J. Appl. Phys. 40 1128

    [25]

    Wu W, Zhang X D, Yin Z H, Zheng P, Wang N L, Luo J L 2010 Sci. China:Phys. Mech. Astron. 53 1207

    [26]

    Zavadskii E A, Sibarova I A 1980 Sov. Phys. JETP 51 542

    [27]

    Kotegawa H, Nakahara S, Akamatsu R, Tou H, Sugawara H, Harima H 2015 Phys. Rev. Lett. 114 117002

    [28]

    Ito T, Ido H, Motizuki K 2007 J. Magn. Magn. Mater. 310 558

    [29]

    Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. X 5 011013

    [30]

    Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. B 91 020506

    [31]

    Tang Z T, Bao J K, Wang Z, Bai H, Jiang H, Liu Y, Zhai H F, Feng C M, Xu Z A, Cao G H 2015 Sci. China:Mater. 58 16

    [32]

    Huber E E J, Ridgley H D 1964 Phys. Rev. 135 A1033

    [33]

    Felcher G P 1966 J. Appl. Phys. 37 1056

    [34]

    Takase A, Kasuya T 1980 J. Phys. Soc. Jpn. 48 430

    [35]

    Banus M D 1972 J. Solid State Chem. 4 391

    [36]

    Matsuda M, Ye F, Dissanayake S E, Cheng J G, Chi S, Ma J, Zhou H D, Yan J Q, Kasamatsu S, Sugino O, Kato T, Matsubayashi K, Okada T, Uwatoko Y 2016 Phys. Rev. B 93 100405

    [37]

    Fan G Z, Zhao B, Wu W, Zheng P, Luo J L 2016 Sci. China:Phys. Mech. Astron. 59 657403

    [38]

    Khasanov R, Amato A, Bonfa P, Guguchia Z, Luetkens H, Morenzoni E, de Renzi R, Zhigadlo N D 2016 Phys. Rev. B 93 180509

    [39]

    Wang Y S, Feng Y J, Cheng J G, Wu W, Luo J L, Rosenbaum T F 2016 Nat. Commun. 7 13037

    [40]

    Yanase A, Hasegawa A 1980 J. Phys. C 13 1989

    [41]

    Davis J C, Lee D H 2013 Proc. Natl. Acad. Sci. USA 110 17623

    [42]

    McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, Cava R J 2009 Phys. Rev. Lett. 103 057002

    [43]

    Imai T, Ahilan K, Ning F L, McQueen T M, Cava R J 2009 Phys. Rev. Lett. 102 177005

    [44]

    Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M, Valenti R 2015 Nat. Phys. 11 953

    [45]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [46]

    Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M, Chen X L 2010 Phys. Rev. B 82 180520

    [47]

    Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J, Clarke S J 2012 Nat. Mater. 12 15

    [48]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630

    [49]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [50]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [51]

    Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2014 Nat. Mater. 14 285

    [52]

    Liu X, Zhao L, He S L, He J F, Liu D F, Mou D X, Shen B, Hu Y, Huang J W, Zhou X J 2015 J. Phys.:Condens. Mater. 27 183201

    [53]

    Bendele M, Amato A, Conder K, Elender M, Keller H, Klauss H H, Luetkens H, Pomjakushina E, Raselli A, Khasanov R 2010 Phys. Rev. Lett. 104 087003

    [54]

    Bendele M, Ichsanow A, Pashkeich Yu, Keller L, Strassle T, Gusev A, Pomjakushina E, Conder K, Khasanov R, Keller H 2012 Phys. Rev. B 85 064517

    [55]

    Terashiam T, Kikugawa N, Kasahara S, Watashige T, Shibauchi T, Matsuda Y, Wolf T, Bohmer A E, Hardy F, Meingast C, Lohneysen H V, Uji S 2015 J. Phys. Soc. Jpn. 84 063701

  • [1]

    Coleman P, Schofield A J 2005 Nature 433 226

    [2]

    Sachdev S, Keimer B 2011 Phys. Today 64 29

    [3]

    Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39

    [4]

    Norman M R 2011 Science 332 196

    [5]

    Monthoux P, Pines D, Lonzarich G G 2007 Nature 450 1177

    [6]

    Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186

    [7]

    Lohneysen H V, Rosch A, Vojta M, Wölfle P 2007 Rev. Mod. Phys. 79 1015

    [8]

    Yu W, Aczel A A, Williams T J, Bud'ko S L, Ni N, Canfield P C, Luke G M 2009 Phys. Rev. B 79 020511

    [9]

    Matsubayashi K, Terai T, Zhou J S, Uwatoko Y 2014 Rhys. Rev. B 90 125126

    [10]

    Wang B S, Matsubayashi K, Cheng J G, Terashima T, Kihou K, Ishida S, Lee C H, Iyo A, Eisaki H, Uwatoko Y 2016 Phys. Rev. B 94 020502

    [11]

    Uwatoko Y 2002 Rev. High Pressure Sci. Technol. 12 306

    [12]

    Mori N, Takahashi H, Takeshita N 2004 High Pressure Res. 24 225

    [13]

    Cheng J G, Matsubayashi K, Nagasaki S, Hisada A, Hirayama T, Hedo M, Kagi H, Uwatoko Y 2014 Rev. Sci. Instrum. 85 093907

    [14]

    Mao H K, Bell P M 1981 Rev. Sci. Instrum. 52 615

    [15]

    Rotundu C R, Cuk T, Greene R L, Shen Z X, Hemley R J, Struzhkin V V 2013 Rev. Sci. Instrum. 84 063903

    [16]

    Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y, Luo J L 2014 Nat. Commun. 5 5508

    [17]

    Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L, Uwatoko Y 2015 Phys. Rev. Lett. 114 117001

    [18]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146

    [19]

    Mori N, Takahashi H, Miyane Y 1990 Kotai Butsuri 25 185

    [20]

    Uwatoko Y, Matsubayashi K, Aso N, Nishi M, Fujiwara T, Hedo M, Tabata S, Takagi K, Tado M, Kagi H 2008 Rev. High Pressure Sci. Technol. 18 230

    [21]

    Matsubayashi K, Hisada A, Kawae T, Uwatoko Y 2012 Rev. High Pressure Sci. Technol. 22 206

    [22]

    Boller H, Kallel A 1971 Solid State Commun. 9 1699

    [23]

    Selte K, Kjekshus A, Jamison W E, Andresen A, Engebretsen J E 1971 Acta Chem. Scand. 25 1703

    [24]

    Watanabe H, Kazama N, Yamaguichi Y, Ohashi M 1969 J. Appl. Phys. 40 1128

    [25]

    Wu W, Zhang X D, Yin Z H, Zheng P, Wang N L, Luo J L 2010 Sci. China:Phys. Mech. Astron. 53 1207

    [26]

    Zavadskii E A, Sibarova I A 1980 Sov. Phys. JETP 51 542

    [27]

    Kotegawa H, Nakahara S, Akamatsu R, Tou H, Sugawara H, Harima H 2015 Phys. Rev. Lett. 114 117002

    [28]

    Ito T, Ido H, Motizuki K 2007 J. Magn. Magn. Mater. 310 558

    [29]

    Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. X 5 011013

    [30]

    Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. B 91 020506

    [31]

    Tang Z T, Bao J K, Wang Z, Bai H, Jiang H, Liu Y, Zhai H F, Feng C M, Xu Z A, Cao G H 2015 Sci. China:Mater. 58 16

    [32]

    Huber E E J, Ridgley H D 1964 Phys. Rev. 135 A1033

    [33]

    Felcher G P 1966 J. Appl. Phys. 37 1056

    [34]

    Takase A, Kasuya T 1980 J. Phys. Soc. Jpn. 48 430

    [35]

    Banus M D 1972 J. Solid State Chem. 4 391

    [36]

    Matsuda M, Ye F, Dissanayake S E, Cheng J G, Chi S, Ma J, Zhou H D, Yan J Q, Kasamatsu S, Sugino O, Kato T, Matsubayashi K, Okada T, Uwatoko Y 2016 Phys. Rev. B 93 100405

    [37]

    Fan G Z, Zhao B, Wu W, Zheng P, Luo J L 2016 Sci. China:Phys. Mech. Astron. 59 657403

    [38]

    Khasanov R, Amato A, Bonfa P, Guguchia Z, Luetkens H, Morenzoni E, de Renzi R, Zhigadlo N D 2016 Phys. Rev. B 93 180509

    [39]

    Wang Y S, Feng Y J, Cheng J G, Wu W, Luo J L, Rosenbaum T F 2016 Nat. Commun. 7 13037

    [40]

    Yanase A, Hasegawa A 1980 J. Phys. C 13 1989

    [41]

    Davis J C, Lee D H 2013 Proc. Natl. Acad. Sci. USA 110 17623

    [42]

    McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, Cava R J 2009 Phys. Rev. Lett. 103 057002

    [43]

    Imai T, Ahilan K, Ning F L, McQueen T M, Cava R J 2009 Phys. Rev. Lett. 102 177005

    [44]

    Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M, Valenti R 2015 Nat. Phys. 11 953

    [45]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [46]

    Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M, Chen X L 2010 Phys. Rev. B 82 180520

    [47]

    Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J, Clarke S J 2012 Nat. Mater. 12 15

    [48]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630

    [49]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [50]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [51]

    Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2014 Nat. Mater. 14 285

    [52]

    Liu X, Zhao L, He S L, He J F, Liu D F, Mou D X, Shen B, Hu Y, Huang J W, Zhou X J 2015 J. Phys.:Condens. Mater. 27 183201

    [53]

    Bendele M, Amato A, Conder K, Elender M, Keller H, Klauss H H, Luetkens H, Pomjakushina E, Raselli A, Khasanov R 2010 Phys. Rev. Lett. 104 087003

    [54]

    Bendele M, Ichsanow A, Pashkeich Yu, Keller L, Strassle T, Gusev A, Pomjakushina E, Conder K, Khasanov R, Keller H 2012 Phys. Rev. B 85 064517

    [55]

    Terashiam T, Kikugawa N, Kasahara S, Watashige T, Shibauchi T, Matsuda Y, Wolf T, Bohmer A E, Hardy F, Meingast C, Lohneysen H V, Uji S 2015 J. Phys. Soc. Jpn. 84 063701

  • [1] 张海松, 卢茂聪, 李志刚. 基于膨胀效应的超临界CO2类沸腾临界点模型.  , 2024, 73(18): 184402. doi: 10.7498/aps.73.20240293
    [2] 杨金颖, 王彬彬, 刘恩克. 磁性拓扑材料中贝利曲率驱动的非常规电输运行为.  , 2023, 72(17): 177103. doi: 10.7498/aps.72.20230995
    [3] 张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟. 二硫化铼的原位高压偏振拉曼光谱.  , 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [4] 王朝, 张铭, 张持, 王如志, 严辉. n = 2 Ruddlesden-Popper Sr3B2Se7 (B = Zr, Hf) 非常规铁电性的第一性原理研究.  , 2021, 70(11): 116302. doi: 10.7498/aps.70.20202142
    [5] 胡江平. 探索非常规高温超导体.  , 2021, 70(1): 017101. doi: 10.7498/aps.70.20202122
    [6] 李建新. 自旋涨落与非常规超导配对.  , 2021, 70(1): 017408. doi: 10.7498/aps.70.20202180
    [7] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导.  , 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [8] 李宏, 张斯淇, 郭明, 李美萱, 宋立军. Fabry-Perot腔与光学参量放大复合系统中实现可调谐的非常规光子阻塞.  , 2019, 68(12): 124203. doi: 10.7498/aps.68.20190154
    [9] 谢武, 沈斌, 张勇军, 郭春煜, 许嘉诚, 路欣, 袁辉球. 重费米子材料与物理.  , 2019, 68(17): 177101. doi: 10.7498/aps.68.20190801
    [10] 赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展.  , 2018, 67(15): 157504. doi: 10.7498/aps.67.20180936
    [11] 孙建平, Prashant Shahi, 周花雪, 倪顺利, 王少华, 雷和畅, 王铂森, 董晓莉, 赵忠贤, 程金光. 插层FeSe高温超导体的高压研究进展.  , 2018, 67(20): 207404. doi: 10.7498/aps.67.20181319
    [12] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为.  , 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [13] 张永祥, 孔贵芹, 俞建宁. 振动筛系统的两类余维三分岔与非常规混沌演化.  , 2008, 57(10): 6182-6187. doi: 10.7498/aps.57.6182
    [14] 邵元智, 蓝图, 林光明. 三维动态Ising模型中的非平衡相变:三临界点的存在.  , 2001, 50(5): 942-947. doi: 10.7498/aps.50.942
    [15] 曹天德, 陈 敏, 王 庆. 杂质引起的非费密液体行为.  , 2000, 49(11): 2261-2263. doi: 10.7498/aps.49.2261
    [16] 陈洪, 郑瑞伦. 量子Heisenberg薄膜临界点的变分累积展开研究.  , 2000, 49(2): 293-296. doi: 10.7498/aps.49.293
    [17] 王治国, 许伯威. Ashkin-Teller量子链的玻色化形式及其新的临界点.  , 1997, 46(5): 841-845. doi: 10.7498/aps.46.841
    [18] 郑瑞伦, 胡先权. 非简谐振动对液氩的临界点与玻意耳线的影响.  , 1994, 43(8): 1254-1261. doi: 10.7498/aps.43.1254
    [19] 陈式刚. 连续相变临界点处的分形结构.  , 1991, 40(4): 584-587. doi: 10.7498/aps.40.584
    [20] 欧发, 邓文基. 光学双稳性临界点的相变行为.  , 1990, 39(6): 90-97. doi: 10.7498/aps.39.90
计量
  • 文章访问数:  7473
  • PDF下载量:  508
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-02
  • 修回日期:  2016-11-19
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map