搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨炔衍生物结构稳定性及电子结构的密度泛函理论研究

迟宝倩 刘轶 徐京城 秦绪明 孙辰 白晟灏 刘一璠 赵新洛 李小武

引用本文:
Citation:

石墨炔衍生物结构稳定性及电子结构的密度泛函理论研究

迟宝倩, 刘轶, 徐京城, 秦绪明, 孙辰, 白晟灏, 刘一璠, 赵新洛, 李小武

Density functional theory study of structure stability and electronic structures of graphyne derivatives

Chi Bao-Qian, Liu Yi, Xu Jing-Cheng, Qin Xu-Ming, Sun Chen, Bai Cheng-Hao, Liu Yi-Fan, Zhao Xin-Luo, Li Xiao-Wu
PDF
导出引用
  • 石墨炔衍生物比石墨烯具有更多样化的原子结构, 因而具有潜在的更丰富的电子结构. 通过第一性原理密度泛函理论研究方法系统研究了 石墨炔衍生物的结构稳定性、原子构型和电子结构. 本文计算的 石墨炔衍生物系列体系由六边形碳环(各边原子数N= 1-10)通过顶点相连而成. 对结构与能量的计算分析表明: 当N为偶数时, 石墨炔拥有单、三键交替的C-C键结构, 其能量比N为奇数时, 拥有连续C=C双键的石墨炔衍生物更稳定. 计算的能带结构和态密度显示: 根据碳环各边原子个数N的奇偶性不同, 石墨炔可呈现金属性(N为奇数时)或半导体特性(N为偶数时). 该奇偶依赖的原子构型和电学性质是由Jahn-Teller畸变效应导致, 与碳环各边原子碳链的实际长度无关. 计算发现部分半导体 石墨炔(N= 2, 6, 10) 呈现狄拉克锥能带特征, 其带隙约10 meV, 且具有0.255106-0.414106 m/s 的高电子速度, 约为石墨烯电子速度的30%-50%. 本密度泛函理论研究表明, 将sp杂化碳原子引入石墨烯六边形碳环的边上, 可通过控制六边形各边原子个数的奇偶性调制其金属和半导体电子特性或狄拉克锥的形成, 为免掺杂和缺陷调控纳米碳材料的电学性质和设计碳基纳米电子器件提供了理论依据.
    Due to the diversified atomic structures and electronic properties, two-dimensional monolayer nanocarbon materials (graphyne or graphdiyne) composed of sp and sp2 hybridization C atoms have received the widespread attention in recent years. The fundamental questions include how the sp orbital hybridization affects the electronic structure of graphyne. In order to investigate the structure dependent electronic structures of graphyne, the energetic stabilities and electronic structures of -graphyne and its derivatives (-N) with N carbon atoms on each edge of the hexagons are investigated by density functional theory (DFT) calculations in this work. In our DFT calculations we adopt generalized gradient approximation of Perdew, Burke, and Ernzerhof (GGA-PBE) using the CASTEP module implemented in Materials Studio. The studied -Ns consist of hexagon carbon rings connected by vertexes whose edges have various numbers of carbon atoms N= 1-10. The structure and energy analyses show that -Ns with even-numbered carbon chains have alternating single and triple C-C bonds, energetically more stable than those with odd-numbered carbon chains possessing continuous C-C double bonds. The calculated electronic structures indicate that -Ns can be either metallic (odd N) or semiconductive (even N), depending on the parity of number of hexagon edge atoms regardless of the edge length due to Jahn-Teller distortion effect. Some semiconducting -graphyne derivatives (-N, N= 2, 6, 10) are found to possess Dirac cones (DC) with small direct band gaps 10 meV and large electron velocities 0.255106-0.414106 m/s, ~30%-50% of that of graphene. We find that Dirac cones also appear in -3 and -4 when we shorten the double bonds and elongate the triple bonds in -3 and -4 respectively. These results show that the bond length change will affect the characteristics of band structure and suggests that the band structure characteristics may be influenced by Peierls distortion in a two-dimensional system. Our DFT studies indicate that introducing sp carbon atoms into the hexagon edges of graphene opens the way to switching between metallic and semiconductor/DC electronic structures via tuning the parity of the number of hexagon edge atoms without doping and defects in nanocarbon materials and nanoelectronic devices.
      通信作者: 刘轶, yiliu@t.shu.edu.cn;xwli@mail.neu.edu.cn ; 李小武, yiliu@t.shu.edu.cn;xwli@mail.neu.edu.cn
    • 基金项目: 上海市科学技术委员会浦江人才计划(批准号: 12PJI406500)、上海市科委科技创新高新技术项目(批准号: 14521100602)、上海市教委科技创新重点项目(批准号: 14ZZ130)、中国石油大学重质油国家重点实验室开放基金(批准号: SKLOP201402001)、国家自然科学基金(批准号: 10974131, 61240054, 51202137)和上海市科委自然科学基金(批准号: 15ZR1416500)资助的课题.
      Corresponding author: Liu Yi, yiliu@t.shu.edu.cn;xwli@mail.neu.edu.cn ; Li Xiao-Wu, yiliu@t.shu.edu.cn;xwli@mail.neu.edu.cn
    • Funds: Project supported by Shanghai Pujiang Talent Program (Grant No. 12PJ1406500), Shanghai High-tech Area of Innovative Science and Technology, China (Grant No. 14521100602), STCSM, Key Program of Innovative Scientific Research (Grant No. 14ZZ130), State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Grant No. SKLOP201402001), National Natural Science Foundation of China (Grant Nos. 10974131, 61240054, 51202137), the Science and Technology Commission of Shanghai Municipality, China (Grant No. 15ZR1416500).
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Kroto H W, Heath J R, OBrien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Chuvilin A, Meyer J C, Algara-Siller G, Kaiser U 2009 New J. Phys. 11 083019

    [5]

    Jin C H, Lan H P, Peng L M, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 205501

    [6]

    Fan X F, Liu L, Lin J Y, Shen Z X, Kuo J L 2009 Acs Nano 3 3788

    [7]

    Liu M J, Artyukhov V I, Lee H, Xu F B, Yakobson B I 2013 Acs Nano 7 10075

    [8]

    Liu Y, Jones R O, Zhao X L, Ando Y 2003 Phys. Rev. B 68 125413

    [9]

    Zhao X L, Ando Y, Liu Y, Jinno M, Suzuki T 2003 Phys. Rev. Lett. 90 187401

    [10]

    Cao R G, Wang Y, Lin Z Z, Ming C, Zhuang J, Ning X J 2010 Acta Phys. Sin. 59 6438 (in Chinese) [曹荣根, 王音, 林正喆, 明辰, 庄军, 宁西京 2010 59 6438]

    [11]

    Qiu M, Zhang Z H, Deng X Q 2010 Acta Phys. Sin. 59 4162 (in Chinese) [邱明, 张振华, 邓小清 2010 59 4162]

    [12]

    Diederich F 1994 Nature 369 199

    [13]

    Gholami M, Melin F, McDonald R, Ferguson M J, Echegoyen L, Tykwinski R R 2007 Angew. Chem. Int. Ed. 46 9081

    [14]

    Kehoe J M, Kiley J H, English J J, Johnson C A, Petersen R C, Haley M M 2000 Org. Lett. 2 969

    [15]

    Marsden J A, Haley M M 2005 J. Org. Chem. 70 10213

    [16]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256

    [17]

    Li G X, Li Y L, Qian X M, Liu H B, Lin H W, Chen N, Li Y J 2011 J. Phys. Chem. C 115 2611

    [18]

    Malko D, Neiss C, Vines F, Gorling A 2012 Phys. Rev. Lett. 108 086804

    [19]

    Chen J M, Xi J Y, Wang D, Shuai Z G 2013 J. Phys. Chem. Lett. 4 1443

    [20]

    Long M Q, Tang L, Wang D, Li Y L, Shuai Z G 2011 Acs Nano 5 2593

    [21]

    Ajori S, Ansari R, Mirnezhad M 2013 Mater. Sci. Eng. A 561 34

    [22]

    Mirnezhad M, Ansari R, Rouhi H, Seifi M, Faghihnasiri M 2012 Solid State Commun. 152 1885

    [23]

    Jafarzadeh H, Roknabadi M R, Shahtahmasebi N, Behdani M 2015 Physica E 67 54

    [24]

    Lin Z Z, Wei Q, Zhu X 2014 Carbon 66 504

    [25]

    Zhou Y H, Tan S H, Chen K Q 2014 Org. Electron 15 3392

    [26]

    Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904

    [27]

    Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919

    [28]

    Huang C H, Zhang S L, Liu H B, Li Y J, Cui G L, Li Y L 2015 Nano Energy 11 481

    [29]

    Lee S H, Jhi S H 2015 Carbon 81 418

    [30]

    Liu Y, Liu W, Wang R G, Hao L F, Jiao W C 2014 Int. J. Hydrog. Energy 39 12757

    [31]

    Lu J L, Guo Y H, Zhang Y, Cao J X 2014 Int. J. Hydrog. Energy 39 17112

    [32]

    Wang Y S, Fei Yuan P, Li M, Fen Jiang W, Sun Q, Jia Y 2013 J. Solid State Chem. 197 323

    [33]

    Xu B, Lei X L, Liu G, Wu M S, Ouyang C Y 2014 Int. J. Hydrog. Energy 39 17104

    [34]

    Zhao W H, Yuan L F, Yang J L 2012 Chin. J. Chem. Phys. 25 434

    [35]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr 220 567

    [36]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [37]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [38]

    Kim B G, Choi H J 2012 Phys. Rev. B 86 5

    [39]

    Lee S H, Chung H J, Heo J, Yang H, Shin J, Chung U I, Seo S 2011 Acs Nano 5 2964

    [40]

    Peierls R E 1955 Quantum Theory of Solids (Clarendon: Oxford)

    [41]

    Deacon R S, Chuang K C, Nicholas R J, Novoselov K S, Geim A K 2007 Phys. Rev. B 76 081406

    [42]

    Jiang Z, Henriksen E A, Tung L C, Wang Y J, Schwartz M E, Han M Y, Kim P, Stormer H L 2007 Phys. Rev. Lett. 98 197403

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Kroto H W, Heath J R, OBrien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Chuvilin A, Meyer J C, Algara-Siller G, Kaiser U 2009 New J. Phys. 11 083019

    [5]

    Jin C H, Lan H P, Peng L M, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 205501

    [6]

    Fan X F, Liu L, Lin J Y, Shen Z X, Kuo J L 2009 Acs Nano 3 3788

    [7]

    Liu M J, Artyukhov V I, Lee H, Xu F B, Yakobson B I 2013 Acs Nano 7 10075

    [8]

    Liu Y, Jones R O, Zhao X L, Ando Y 2003 Phys. Rev. B 68 125413

    [9]

    Zhao X L, Ando Y, Liu Y, Jinno M, Suzuki T 2003 Phys. Rev. Lett. 90 187401

    [10]

    Cao R G, Wang Y, Lin Z Z, Ming C, Zhuang J, Ning X J 2010 Acta Phys. Sin. 59 6438 (in Chinese) [曹荣根, 王音, 林正喆, 明辰, 庄军, 宁西京 2010 59 6438]

    [11]

    Qiu M, Zhang Z H, Deng X Q 2010 Acta Phys. Sin. 59 4162 (in Chinese) [邱明, 张振华, 邓小清 2010 59 4162]

    [12]

    Diederich F 1994 Nature 369 199

    [13]

    Gholami M, Melin F, McDonald R, Ferguson M J, Echegoyen L, Tykwinski R R 2007 Angew. Chem. Int. Ed. 46 9081

    [14]

    Kehoe J M, Kiley J H, English J J, Johnson C A, Petersen R C, Haley M M 2000 Org. Lett. 2 969

    [15]

    Marsden J A, Haley M M 2005 J. Org. Chem. 70 10213

    [16]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256

    [17]

    Li G X, Li Y L, Qian X M, Liu H B, Lin H W, Chen N, Li Y J 2011 J. Phys. Chem. C 115 2611

    [18]

    Malko D, Neiss C, Vines F, Gorling A 2012 Phys. Rev. Lett. 108 086804

    [19]

    Chen J M, Xi J Y, Wang D, Shuai Z G 2013 J. Phys. Chem. Lett. 4 1443

    [20]

    Long M Q, Tang L, Wang D, Li Y L, Shuai Z G 2011 Acs Nano 5 2593

    [21]

    Ajori S, Ansari R, Mirnezhad M 2013 Mater. Sci. Eng. A 561 34

    [22]

    Mirnezhad M, Ansari R, Rouhi H, Seifi M, Faghihnasiri M 2012 Solid State Commun. 152 1885

    [23]

    Jafarzadeh H, Roknabadi M R, Shahtahmasebi N, Behdani M 2015 Physica E 67 54

    [24]

    Lin Z Z, Wei Q, Zhu X 2014 Carbon 66 504

    [25]

    Zhou Y H, Tan S H, Chen K Q 2014 Org. Electron 15 3392

    [26]

    Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904

    [27]

    Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919

    [28]

    Huang C H, Zhang S L, Liu H B, Li Y J, Cui G L, Li Y L 2015 Nano Energy 11 481

    [29]

    Lee S H, Jhi S H 2015 Carbon 81 418

    [30]

    Liu Y, Liu W, Wang R G, Hao L F, Jiao W C 2014 Int. J. Hydrog. Energy 39 12757

    [31]

    Lu J L, Guo Y H, Zhang Y, Cao J X 2014 Int. J. Hydrog. Energy 39 17112

    [32]

    Wang Y S, Fei Yuan P, Li M, Fen Jiang W, Sun Q, Jia Y 2013 J. Solid State Chem. 197 323

    [33]

    Xu B, Lei X L, Liu G, Wu M S, Ouyang C Y 2014 Int. J. Hydrog. Energy 39 17104

    [34]

    Zhao W H, Yuan L F, Yang J L 2012 Chin. J. Chem. Phys. 25 434

    [35]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr 220 567

    [36]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [37]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [38]

    Kim B G, Choi H J 2012 Phys. Rev. B 86 5

    [39]

    Lee S H, Chung H J, Heo J, Yang H, Shin J, Chung U I, Seo S 2011 Acs Nano 5 2964

    [40]

    Peierls R E 1955 Quantum Theory of Solids (Clarendon: Oxford)

    [41]

    Deacon R S, Chuang K C, Nicholas R J, Novoselov K S, Geim A K 2007 Phys. Rev. B 76 081406

    [42]

    Jiang Z, Henriksen E A, Tung L C, Wang Y J, Schwartz M E, Han M Y, Kim P, Stormer H L 2007 Phys. Rev. Lett. 98 197403

  • [1] 纪雨萱, 张明楷, 李妍. 二维光子晶体中的双波段半狄拉克锥与零折射率材料.  , 2024, 73(18): 181101. doi: 10.7498/aps.73.20240800
    [2] 王焕文, 付博, 沈顺清. 狄拉克量子材料中的输运理论进展.  , 2023, 72(17): 177303. doi: 10.7498/aps.72.20230672
    [3] 佟赞, 杨银利, 徐晶, 刘伟, 陈亮. 冠醚石墨烷对氦气分离性能的理论研究.  , 2023, 72(6): 068201. doi: 10.7498/aps.72.20222183
    [4] 邱梓恒, AhmedYousif Ghazal, 龙金友, 张嵩. 三乙胺分子构象与红外光谱的理论研究.  , 2022, 71(10): 103601. doi: 10.7498/aps.71.20220123
    [5] 赵嘉琳, 程开, 于雪克, 赵纪军, 苏艳. 几种典型含能材料光激发解离的含时密度泛函理论研究.  , 2021, 70(20): 203301. doi: 10.7498/aps.70.20210670
    [6] 徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究.  , 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
    [7] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算.  , 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [8] 杨俊涛, 熊永臣, 黄海铭, 罗时军. 多狄拉克锥的二维CrPSe3的半金属铁磁性与电子结构(已撤稿).  , 2020, 69(24): 247101. doi: 10.7498/aps.69.20200960
    [9] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究.  , 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [10] 蔡梦圆, 唐春梅, 张秋月. Li离子电池负极材料石墨炔在B, N掺杂调控下的储Li性能优化.  , 2019, 68(21): 213601. doi: 10.7498/aps.68.20191161
    [11] 陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬. Sm3+,Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算.  , 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [12] 陈献, 程梅娟, 吴顺情, 朱梓忠. 石墨炔衍生物结构稳定性和电子结构的第一性原理研究.  , 2017, 66(10): 107102. doi: 10.7498/aps.66.107102
    [13] 黄学勤, 陈子亭. k=0处的类狄拉克锥.  , 2015, 64(18): 184208. doi: 10.7498/aps.64.184208
    [14] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO.  , 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [15] 方志杰, 莫曼, 朱基珍, 杨浩. 透明导电氧化物CuScO2的密度泛函理论研究.  , 2012, 61(22): 227401. doi: 10.7498/aps.61.227401
    [16] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究.  , 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [17] 刘福, 周继承, 谭晓超. 3C-SiC(001)-(2×1)表面原子与电子结构研究.  , 2009, 58(11): 7821-7825. doi: 10.7498/aps.58.7821
    [18] 葛桂贤, 罗有华. 密度泛函理论研究MgnOn(n=2—8)团簇的结构和电子性质.  , 2008, 57(8): 4851-4856. doi: 10.7498/aps.57.4851
    [19] 柏于杰, 付石友, 邓开明, 唐春梅, 陈 宣, 谭伟石, 刘玉真, 黄德财. 密度泛函理论计算内掺氢分子富勒烯H2@C60及其二聚体的几何结构和电子结构.  , 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [20] 马丙现, 姚 宁, 杨仕娥, 鲁占灵, 樊志勤, 张兵临. 氢的强化刻蚀对金刚石薄膜品质的影响与sp2杂化碳原子的存在形态.  , 2004, 53(7): 2287-2291. doi: 10.7498/aps.53.2287
计量
  • 文章访问数:  6967
  • PDF下载量:  835
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-26
  • 修回日期:  2016-04-18
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map